Metamath Proof Explorer


Theorem ifpor

Description: The conditional operator implies the disjunction of its possible outputs. Dual statement of anifp . (Contributed by BJ, 1-Oct-2019)

Ref Expression
Assertion ifpor
|- ( if- ( ph , ps , ch ) -> ( ps \/ ch ) )

Proof

Step Hyp Ref Expression
1 df-ifp
 |-  ( if- ( ph , ps , ch ) <-> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) )
2 simpr
 |-  ( ( ph /\ ps ) -> ps )
3 simpr
 |-  ( ( -. ph /\ ch ) -> ch )
4 2 3 orim12i
 |-  ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) -> ( ps \/ ch ) )
5 1 4 sylbi
 |-  ( if- ( ph , ps , ch ) -> ( ps \/ ch ) )