Metamath Proof Explorer


Theorem ifssun

Description: A conditional class is included in the union of its two alternatives. (Contributed by BJ, 15-Aug-2024)

Ref Expression
Assertion ifssun
|- if ( ph , A , B ) C_ ( A u. B )

Proof

Step Hyp Ref Expression
1 eqid
 |-  { x | ph } = { x | ph }
2 1 dfif4
 |-  if ( ph , A , B ) = ( ( A u. B ) i^i ( ( A u. ( _V \ { x | ph } ) ) i^i ( B u. { x | ph } ) ) )
3 inss1
 |-  ( ( A u. B ) i^i ( ( A u. ( _V \ { x | ph } ) ) i^i ( B u. { x | ph } ) ) ) C_ ( A u. B )
4 2 3 eqsstri
 |-  if ( ph , A , B ) C_ ( A u. B )