Metamath Proof Explorer


Theorem iftruei

Description: Inference associated with iftrue . (Contributed by BJ, 7-Oct-2018)

Ref Expression
Hypothesis iftruei.1
|- ph
Assertion iftruei
|- if ( ph , A , B ) = A

Proof

Step Hyp Ref Expression
1 iftruei.1
 |-  ph
2 iftrue
 |-  ( ph -> if ( ph , A , B ) = A )
3 1 2 ax-mp
 |-  if ( ph , A , B ) = A