Step |
Hyp |
Ref |
Expression |
1 |
|
ig1pval.p |
|- P = ( Poly1 ` R ) |
2 |
|
ig1pval.g |
|- G = ( idlGen1p ` R ) |
3 |
|
ig1pcl.u |
|- U = ( LIdeal ` P ) |
4 |
|
ig1pdvds.d |
|- .|| = ( ||r ` P ) |
5 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
6 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
7 |
5 6
|
syl |
|- ( R e. DivRing -> P e. Ring ) |
8 |
7
|
3ad2ant1 |
|- ( ( R e. DivRing /\ I e. U /\ X e. I ) -> P e. Ring ) |
9 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
10 |
9 3
|
lidlss |
|- ( I e. U -> I C_ ( Base ` P ) ) |
11 |
10
|
3ad2ant2 |
|- ( ( R e. DivRing /\ I e. U /\ X e. I ) -> I C_ ( Base ` P ) ) |
12 |
1 2 3
|
ig1pcl |
|- ( ( R e. DivRing /\ I e. U ) -> ( G ` I ) e. I ) |
13 |
12
|
3adant3 |
|- ( ( R e. DivRing /\ I e. U /\ X e. I ) -> ( G ` I ) e. I ) |
14 |
11 13
|
sseldd |
|- ( ( R e. DivRing /\ I e. U /\ X e. I ) -> ( G ` I ) e. ( Base ` P ) ) |
15 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
16 |
9 4 15
|
dvdsr01 |
|- ( ( P e. Ring /\ ( G ` I ) e. ( Base ` P ) ) -> ( G ` I ) .|| ( 0g ` P ) ) |
17 |
8 14 16
|
syl2anc |
|- ( ( R e. DivRing /\ I e. U /\ X e. I ) -> ( G ` I ) .|| ( 0g ` P ) ) |
18 |
17
|
adantr |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I = { ( 0g ` P ) } ) -> ( G ` I ) .|| ( 0g ` P ) ) |
19 |
|
eleq2 |
|- ( I = { ( 0g ` P ) } -> ( X e. I <-> X e. { ( 0g ` P ) } ) ) |
20 |
19
|
biimpac |
|- ( ( X e. I /\ I = { ( 0g ` P ) } ) -> X e. { ( 0g ` P ) } ) |
21 |
20
|
3ad2antl3 |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I = { ( 0g ` P ) } ) -> X e. { ( 0g ` P ) } ) |
22 |
|
elsni |
|- ( X e. { ( 0g ` P ) } -> X = ( 0g ` P ) ) |
23 |
21 22
|
syl |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I = { ( 0g ` P ) } ) -> X = ( 0g ` P ) ) |
24 |
18 23
|
breqtrrd |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I = { ( 0g ` P ) } ) -> ( G ` I ) .|| X ) |
25 |
|
simpl1 |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> R e. DivRing ) |
26 |
25 5
|
syl |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> R e. Ring ) |
27 |
|
simpl2 |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> I e. U ) |
28 |
27 10
|
syl |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> I C_ ( Base ` P ) ) |
29 |
|
simpl3 |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> X e. I ) |
30 |
28 29
|
sseldd |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> X e. ( Base ` P ) ) |
31 |
|
simpr |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> I =/= { ( 0g ` P ) } ) |
32 |
|
eqid |
|- ( deg1 ` R ) = ( deg1 ` R ) |
33 |
|
eqid |
|- ( Monic1p ` R ) = ( Monic1p ` R ) |
34 |
1 2 15 3 32 33
|
ig1pval3 |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { ( 0g ` P ) } ) -> ( ( G ` I ) e. I /\ ( G ` I ) e. ( Monic1p ` R ) /\ ( ( deg1 ` R ) ` ( G ` I ) ) = inf ( ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) , RR , < ) ) ) |
35 |
25 27 31 34
|
syl3anc |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( ( G ` I ) e. I /\ ( G ` I ) e. ( Monic1p ` R ) /\ ( ( deg1 ` R ) ` ( G ` I ) ) = inf ( ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) , RR , < ) ) ) |
36 |
35
|
simp2d |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( G ` I ) e. ( Monic1p ` R ) ) |
37 |
|
eqid |
|- ( Unic1p ` R ) = ( Unic1p ` R ) |
38 |
37 33
|
mon1puc1p |
|- ( ( R e. Ring /\ ( G ` I ) e. ( Monic1p ` R ) ) -> ( G ` I ) e. ( Unic1p ` R ) ) |
39 |
26 36 38
|
syl2anc |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( G ` I ) e. ( Unic1p ` R ) ) |
40 |
|
eqid |
|- ( rem1p ` R ) = ( rem1p ` R ) |
41 |
40 1 9 37 32
|
r1pdeglt |
|- ( ( R e. Ring /\ X e. ( Base ` P ) /\ ( G ` I ) e. ( Unic1p ` R ) ) -> ( ( deg1 ` R ) ` ( X ( rem1p ` R ) ( G ` I ) ) ) < ( ( deg1 ` R ) ` ( G ` I ) ) ) |
42 |
26 30 39 41
|
syl3anc |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( ( deg1 ` R ) ` ( X ( rem1p ` R ) ( G ` I ) ) ) < ( ( deg1 ` R ) ` ( G ` I ) ) ) |
43 |
35
|
simp3d |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( ( deg1 ` R ) ` ( G ` I ) ) = inf ( ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) , RR , < ) ) |
44 |
42 43
|
breqtrd |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( ( deg1 ` R ) ` ( X ( rem1p ` R ) ( G ` I ) ) ) < inf ( ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) , RR , < ) ) |
45 |
32 1 9
|
deg1xrf |
|- ( deg1 ` R ) : ( Base ` P ) --> RR* |
46 |
35
|
simp1d |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( G ` I ) e. I ) |
47 |
28 46
|
sseldd |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( G ` I ) e. ( Base ` P ) ) |
48 |
|
eqid |
|- ( quot1p ` R ) = ( quot1p ` R ) |
49 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
50 |
|
eqid |
|- ( -g ` P ) = ( -g ` P ) |
51 |
40 1 9 48 49 50
|
r1pval |
|- ( ( X e. ( Base ` P ) /\ ( G ` I ) e. ( Base ` P ) ) -> ( X ( rem1p ` R ) ( G ` I ) ) = ( X ( -g ` P ) ( ( X ( quot1p ` R ) ( G ` I ) ) ( .r ` P ) ( G ` I ) ) ) ) |
52 |
30 47 51
|
syl2anc |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( X ( rem1p ` R ) ( G ` I ) ) = ( X ( -g ` P ) ( ( X ( quot1p ` R ) ( G ` I ) ) ( .r ` P ) ( G ` I ) ) ) ) |
53 |
26 6
|
syl |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> P e. Ring ) |
54 |
48 1 9 37
|
q1pcl |
|- ( ( R e. Ring /\ X e. ( Base ` P ) /\ ( G ` I ) e. ( Unic1p ` R ) ) -> ( X ( quot1p ` R ) ( G ` I ) ) e. ( Base ` P ) ) |
55 |
26 30 39 54
|
syl3anc |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( X ( quot1p ` R ) ( G ` I ) ) e. ( Base ` P ) ) |
56 |
3 9 49
|
lidlmcl |
|- ( ( ( P e. Ring /\ I e. U ) /\ ( ( X ( quot1p ` R ) ( G ` I ) ) e. ( Base ` P ) /\ ( G ` I ) e. I ) ) -> ( ( X ( quot1p ` R ) ( G ` I ) ) ( .r ` P ) ( G ` I ) ) e. I ) |
57 |
53 27 55 46 56
|
syl22anc |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( ( X ( quot1p ` R ) ( G ` I ) ) ( .r ` P ) ( G ` I ) ) e. I ) |
58 |
3 50
|
lidlsubcl |
|- ( ( ( P e. Ring /\ I e. U ) /\ ( X e. I /\ ( ( X ( quot1p ` R ) ( G ` I ) ) ( .r ` P ) ( G ` I ) ) e. I ) ) -> ( X ( -g ` P ) ( ( X ( quot1p ` R ) ( G ` I ) ) ( .r ` P ) ( G ` I ) ) ) e. I ) |
59 |
53 27 29 57 58
|
syl22anc |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( X ( -g ` P ) ( ( X ( quot1p ` R ) ( G ` I ) ) ( .r ` P ) ( G ` I ) ) ) e. I ) |
60 |
52 59
|
eqeltrd |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( X ( rem1p ` R ) ( G ` I ) ) e. I ) |
61 |
28 60
|
sseldd |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( X ( rem1p ` R ) ( G ` I ) ) e. ( Base ` P ) ) |
62 |
|
ffvelrn |
|- ( ( ( deg1 ` R ) : ( Base ` P ) --> RR* /\ ( X ( rem1p ` R ) ( G ` I ) ) e. ( Base ` P ) ) -> ( ( deg1 ` R ) ` ( X ( rem1p ` R ) ( G ` I ) ) ) e. RR* ) |
63 |
45 61 62
|
sylancr |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( ( deg1 ` R ) ` ( X ( rem1p ` R ) ( G ` I ) ) ) e. RR* ) |
64 |
28
|
ssdifd |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( I \ { ( 0g ` P ) } ) C_ ( ( Base ` P ) \ { ( 0g ` P ) } ) ) |
65 |
|
imass2 |
|- ( ( I \ { ( 0g ` P ) } ) C_ ( ( Base ` P ) \ { ( 0g ` P ) } ) -> ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) C_ ( ( deg1 ` R ) " ( ( Base ` P ) \ { ( 0g ` P ) } ) ) ) |
66 |
64 65
|
syl |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) C_ ( ( deg1 ` R ) " ( ( Base ` P ) \ { ( 0g ` P ) } ) ) ) |
67 |
32 1 15 9
|
deg1n0ima |
|- ( R e. Ring -> ( ( deg1 ` R ) " ( ( Base ` P ) \ { ( 0g ` P ) } ) ) C_ NN0 ) |
68 |
26 67
|
syl |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( ( deg1 ` R ) " ( ( Base ` P ) \ { ( 0g ` P ) } ) ) C_ NN0 ) |
69 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
70 |
68 69
|
sseqtrdi |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( ( deg1 ` R ) " ( ( Base ` P ) \ { ( 0g ` P ) } ) ) C_ ( ZZ>= ` 0 ) ) |
71 |
66 70
|
sstrd |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) C_ ( ZZ>= ` 0 ) ) |
72 |
|
uzssz |
|- ( ZZ>= ` 0 ) C_ ZZ |
73 |
|
zssre |
|- ZZ C_ RR |
74 |
|
ressxr |
|- RR C_ RR* |
75 |
73 74
|
sstri |
|- ZZ C_ RR* |
76 |
72 75
|
sstri |
|- ( ZZ>= ` 0 ) C_ RR* |
77 |
71 76
|
sstrdi |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) C_ RR* ) |
78 |
3 15
|
lidl0cl |
|- ( ( P e. Ring /\ I e. U ) -> ( 0g ` P ) e. I ) |
79 |
53 27 78
|
syl2anc |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( 0g ` P ) e. I ) |
80 |
79
|
snssd |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> { ( 0g ` P ) } C_ I ) |
81 |
31
|
necomd |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> { ( 0g ` P ) } =/= I ) |
82 |
|
pssdifn0 |
|- ( ( { ( 0g ` P ) } C_ I /\ { ( 0g ` P ) } =/= I ) -> ( I \ { ( 0g ` P ) } ) =/= (/) ) |
83 |
80 81 82
|
syl2anc |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( I \ { ( 0g ` P ) } ) =/= (/) ) |
84 |
|
ffn |
|- ( ( deg1 ` R ) : ( Base ` P ) --> RR* -> ( deg1 ` R ) Fn ( Base ` P ) ) |
85 |
45 84
|
ax-mp |
|- ( deg1 ` R ) Fn ( Base ` P ) |
86 |
28
|
ssdifssd |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( I \ { ( 0g ` P ) } ) C_ ( Base ` P ) ) |
87 |
|
fnimaeq0 |
|- ( ( ( deg1 ` R ) Fn ( Base ` P ) /\ ( I \ { ( 0g ` P ) } ) C_ ( Base ` P ) ) -> ( ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) = (/) <-> ( I \ { ( 0g ` P ) } ) = (/) ) ) |
88 |
85 86 87
|
sylancr |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) = (/) <-> ( I \ { ( 0g ` P ) } ) = (/) ) ) |
89 |
88
|
necon3bid |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) =/= (/) <-> ( I \ { ( 0g ` P ) } ) =/= (/) ) ) |
90 |
83 89
|
mpbird |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) =/= (/) ) |
91 |
|
infssuzcl |
|- ( ( ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) C_ ( ZZ>= ` 0 ) /\ ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) =/= (/) ) -> inf ( ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) , RR , < ) e. ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) ) |
92 |
71 90 91
|
syl2anc |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> inf ( ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) , RR , < ) e. ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) ) |
93 |
77 92
|
sseldd |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> inf ( ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) , RR , < ) e. RR* ) |
94 |
|
xrltnle |
|- ( ( ( ( deg1 ` R ) ` ( X ( rem1p ` R ) ( G ` I ) ) ) e. RR* /\ inf ( ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) , RR , < ) e. RR* ) -> ( ( ( deg1 ` R ) ` ( X ( rem1p ` R ) ( G ` I ) ) ) < inf ( ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) , RR , < ) <-> -. inf ( ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) , RR , < ) <_ ( ( deg1 ` R ) ` ( X ( rem1p ` R ) ( G ` I ) ) ) ) ) |
95 |
63 93 94
|
syl2anc |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( ( ( deg1 ` R ) ` ( X ( rem1p ` R ) ( G ` I ) ) ) < inf ( ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) , RR , < ) <-> -. inf ( ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) , RR , < ) <_ ( ( deg1 ` R ) ` ( X ( rem1p ` R ) ( G ` I ) ) ) ) ) |
96 |
44 95
|
mpbid |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> -. inf ( ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) , RR , < ) <_ ( ( deg1 ` R ) ` ( X ( rem1p ` R ) ( G ` I ) ) ) ) |
97 |
71
|
adantr |
|- ( ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) /\ ( X ( rem1p ` R ) ( G ` I ) ) =/= ( 0g ` P ) ) -> ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) C_ ( ZZ>= ` 0 ) ) |
98 |
60
|
adantr |
|- ( ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) /\ ( X ( rem1p ` R ) ( G ` I ) ) =/= ( 0g ` P ) ) -> ( X ( rem1p ` R ) ( G ` I ) ) e. I ) |
99 |
|
simpr |
|- ( ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) /\ ( X ( rem1p ` R ) ( G ` I ) ) =/= ( 0g ` P ) ) -> ( X ( rem1p ` R ) ( G ` I ) ) =/= ( 0g ` P ) ) |
100 |
|
eldifsn |
|- ( ( X ( rem1p ` R ) ( G ` I ) ) e. ( I \ { ( 0g ` P ) } ) <-> ( ( X ( rem1p ` R ) ( G ` I ) ) e. I /\ ( X ( rem1p ` R ) ( G ` I ) ) =/= ( 0g ` P ) ) ) |
101 |
98 99 100
|
sylanbrc |
|- ( ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) /\ ( X ( rem1p ` R ) ( G ` I ) ) =/= ( 0g ` P ) ) -> ( X ( rem1p ` R ) ( G ` I ) ) e. ( I \ { ( 0g ` P ) } ) ) |
102 |
|
fnfvima |
|- ( ( ( deg1 ` R ) Fn ( Base ` P ) /\ ( I \ { ( 0g ` P ) } ) C_ ( Base ` P ) /\ ( X ( rem1p ` R ) ( G ` I ) ) e. ( I \ { ( 0g ` P ) } ) ) -> ( ( deg1 ` R ) ` ( X ( rem1p ` R ) ( G ` I ) ) ) e. ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) ) |
103 |
85 86 101 102
|
mp3an2ani |
|- ( ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) /\ ( X ( rem1p ` R ) ( G ` I ) ) =/= ( 0g ` P ) ) -> ( ( deg1 ` R ) ` ( X ( rem1p ` R ) ( G ` I ) ) ) e. ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) ) |
104 |
|
infssuzle |
|- ( ( ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) C_ ( ZZ>= ` 0 ) /\ ( ( deg1 ` R ) ` ( X ( rem1p ` R ) ( G ` I ) ) ) e. ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) ) -> inf ( ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) , RR , < ) <_ ( ( deg1 ` R ) ` ( X ( rem1p ` R ) ( G ` I ) ) ) ) |
105 |
97 103 104
|
syl2anc |
|- ( ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) /\ ( X ( rem1p ` R ) ( G ` I ) ) =/= ( 0g ` P ) ) -> inf ( ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) , RR , < ) <_ ( ( deg1 ` R ) ` ( X ( rem1p ` R ) ( G ` I ) ) ) ) |
106 |
105
|
ex |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( ( X ( rem1p ` R ) ( G ` I ) ) =/= ( 0g ` P ) -> inf ( ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) , RR , < ) <_ ( ( deg1 ` R ) ` ( X ( rem1p ` R ) ( G ` I ) ) ) ) ) |
107 |
106
|
necon1bd |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( -. inf ( ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) , RR , < ) <_ ( ( deg1 ` R ) ` ( X ( rem1p ` R ) ( G ` I ) ) ) -> ( X ( rem1p ` R ) ( G ` I ) ) = ( 0g ` P ) ) ) |
108 |
96 107
|
mpd |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( X ( rem1p ` R ) ( G ` I ) ) = ( 0g ` P ) ) |
109 |
1 4 9 37 15 40
|
dvdsr1p |
|- ( ( R e. Ring /\ X e. ( Base ` P ) /\ ( G ` I ) e. ( Unic1p ` R ) ) -> ( ( G ` I ) .|| X <-> ( X ( rem1p ` R ) ( G ` I ) ) = ( 0g ` P ) ) ) |
110 |
26 30 39 109
|
syl3anc |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( ( G ` I ) .|| X <-> ( X ( rem1p ` R ) ( G ` I ) ) = ( 0g ` P ) ) ) |
111 |
108 110
|
mpbird |
|- ( ( ( R e. DivRing /\ I e. U /\ X e. I ) /\ I =/= { ( 0g ` P ) } ) -> ( G ` I ) .|| X ) |
112 |
24 111
|
pm2.61dane |
|- ( ( R e. DivRing /\ I e. U /\ X e. I ) -> ( G ` I ) .|| X ) |