Step |
Hyp |
Ref |
Expression |
1 |
|
ig1pval.p |
|- P = ( Poly1 ` R ) |
2 |
|
ig1pval.g |
|- G = ( idlGen1p ` R ) |
3 |
|
ig1pval.z |
|- .0. = ( 0g ` P ) |
4 |
|
ig1pval.u |
|- U = ( LIdeal ` P ) |
5 |
|
ig1pval.d |
|- D = ( deg1 ` R ) |
6 |
|
ig1pval.m |
|- M = ( Monic1p ` R ) |
7 |
|
elex |
|- ( R e. V -> R e. _V ) |
8 |
|
fveq2 |
|- ( r = R -> ( Poly1 ` r ) = ( Poly1 ` R ) ) |
9 |
8 1
|
eqtr4di |
|- ( r = R -> ( Poly1 ` r ) = P ) |
10 |
9
|
fveq2d |
|- ( r = R -> ( LIdeal ` ( Poly1 ` r ) ) = ( LIdeal ` P ) ) |
11 |
10 4
|
eqtr4di |
|- ( r = R -> ( LIdeal ` ( Poly1 ` r ) ) = U ) |
12 |
9
|
fveq2d |
|- ( r = R -> ( 0g ` ( Poly1 ` r ) ) = ( 0g ` P ) ) |
13 |
12 3
|
eqtr4di |
|- ( r = R -> ( 0g ` ( Poly1 ` r ) ) = .0. ) |
14 |
13
|
sneqd |
|- ( r = R -> { ( 0g ` ( Poly1 ` r ) ) } = { .0. } ) |
15 |
14
|
eqeq2d |
|- ( r = R -> ( i = { ( 0g ` ( Poly1 ` r ) ) } <-> i = { .0. } ) ) |
16 |
|
fveq2 |
|- ( r = R -> ( Monic1p ` r ) = ( Monic1p ` R ) ) |
17 |
16 6
|
eqtr4di |
|- ( r = R -> ( Monic1p ` r ) = M ) |
18 |
17
|
ineq2d |
|- ( r = R -> ( i i^i ( Monic1p ` r ) ) = ( i i^i M ) ) |
19 |
|
fveq2 |
|- ( r = R -> ( deg1 ` r ) = ( deg1 ` R ) ) |
20 |
19 5
|
eqtr4di |
|- ( r = R -> ( deg1 ` r ) = D ) |
21 |
20
|
fveq1d |
|- ( r = R -> ( ( deg1 ` r ) ` g ) = ( D ` g ) ) |
22 |
14
|
difeq2d |
|- ( r = R -> ( i \ { ( 0g ` ( Poly1 ` r ) ) } ) = ( i \ { .0. } ) ) |
23 |
20 22
|
imaeq12d |
|- ( r = R -> ( ( deg1 ` r ) " ( i \ { ( 0g ` ( Poly1 ` r ) ) } ) ) = ( D " ( i \ { .0. } ) ) ) |
24 |
23
|
infeq1d |
|- ( r = R -> inf ( ( ( deg1 ` r ) " ( i \ { ( 0g ` ( Poly1 ` r ) ) } ) ) , RR , < ) = inf ( ( D " ( i \ { .0. } ) ) , RR , < ) ) |
25 |
21 24
|
eqeq12d |
|- ( r = R -> ( ( ( deg1 ` r ) ` g ) = inf ( ( ( deg1 ` r ) " ( i \ { ( 0g ` ( Poly1 ` r ) ) } ) ) , RR , < ) <-> ( D ` g ) = inf ( ( D " ( i \ { .0. } ) ) , RR , < ) ) ) |
26 |
18 25
|
riotaeqbidv |
|- ( r = R -> ( iota_ g e. ( i i^i ( Monic1p ` r ) ) ( ( deg1 ` r ) ` g ) = inf ( ( ( deg1 ` r ) " ( i \ { ( 0g ` ( Poly1 ` r ) ) } ) ) , RR , < ) ) = ( iota_ g e. ( i i^i M ) ( D ` g ) = inf ( ( D " ( i \ { .0. } ) ) , RR , < ) ) ) |
27 |
15 13 26
|
ifbieq12d |
|- ( r = R -> if ( i = { ( 0g ` ( Poly1 ` r ) ) } , ( 0g ` ( Poly1 ` r ) ) , ( iota_ g e. ( i i^i ( Monic1p ` r ) ) ( ( deg1 ` r ) ` g ) = inf ( ( ( deg1 ` r ) " ( i \ { ( 0g ` ( Poly1 ` r ) ) } ) ) , RR , < ) ) ) = if ( i = { .0. } , .0. , ( iota_ g e. ( i i^i M ) ( D ` g ) = inf ( ( D " ( i \ { .0. } ) ) , RR , < ) ) ) ) |
28 |
11 27
|
mpteq12dv |
|- ( r = R -> ( i e. ( LIdeal ` ( Poly1 ` r ) ) |-> if ( i = { ( 0g ` ( Poly1 ` r ) ) } , ( 0g ` ( Poly1 ` r ) ) , ( iota_ g e. ( i i^i ( Monic1p ` r ) ) ( ( deg1 ` r ) ` g ) = inf ( ( ( deg1 ` r ) " ( i \ { ( 0g ` ( Poly1 ` r ) ) } ) ) , RR , < ) ) ) ) = ( i e. U |-> if ( i = { .0. } , .0. , ( iota_ g e. ( i i^i M ) ( D ` g ) = inf ( ( D " ( i \ { .0. } ) ) , RR , < ) ) ) ) ) |
29 |
|
df-ig1p |
|- idlGen1p = ( r e. _V |-> ( i e. ( LIdeal ` ( Poly1 ` r ) ) |-> if ( i = { ( 0g ` ( Poly1 ` r ) ) } , ( 0g ` ( Poly1 ` r ) ) , ( iota_ g e. ( i i^i ( Monic1p ` r ) ) ( ( deg1 ` r ) ` g ) = inf ( ( ( deg1 ` r ) " ( i \ { ( 0g ` ( Poly1 ` r ) ) } ) ) , RR , < ) ) ) ) ) |
30 |
28 29 4
|
mptfvmpt |
|- ( R e. _V -> ( idlGen1p ` R ) = ( i e. U |-> if ( i = { .0. } , .0. , ( iota_ g e. ( i i^i M ) ( D ` g ) = inf ( ( D " ( i \ { .0. } ) ) , RR , < ) ) ) ) ) |
31 |
7 30
|
syl |
|- ( R e. V -> ( idlGen1p ` R ) = ( i e. U |-> if ( i = { .0. } , .0. , ( iota_ g e. ( i i^i M ) ( D ` g ) = inf ( ( D " ( i \ { .0. } ) ) , RR , < ) ) ) ) ) |
32 |
2 31
|
eqtrid |
|- ( R e. V -> G = ( i e. U |-> if ( i = { .0. } , .0. , ( iota_ g e. ( i i^i M ) ( D ` g ) = inf ( ( D " ( i \ { .0. } ) ) , RR , < ) ) ) ) ) |
33 |
32
|
fveq1d |
|- ( R e. V -> ( G ` I ) = ( ( i e. U |-> if ( i = { .0. } , .0. , ( iota_ g e. ( i i^i M ) ( D ` g ) = inf ( ( D " ( i \ { .0. } ) ) , RR , < ) ) ) ) ` I ) ) |
34 |
|
eqeq1 |
|- ( i = I -> ( i = { .0. } <-> I = { .0. } ) ) |
35 |
|
ineq1 |
|- ( i = I -> ( i i^i M ) = ( I i^i M ) ) |
36 |
|
difeq1 |
|- ( i = I -> ( i \ { .0. } ) = ( I \ { .0. } ) ) |
37 |
36
|
imaeq2d |
|- ( i = I -> ( D " ( i \ { .0. } ) ) = ( D " ( I \ { .0. } ) ) ) |
38 |
37
|
infeq1d |
|- ( i = I -> inf ( ( D " ( i \ { .0. } ) ) , RR , < ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) |
39 |
38
|
eqeq2d |
|- ( i = I -> ( ( D ` g ) = inf ( ( D " ( i \ { .0. } ) ) , RR , < ) <-> ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) |
40 |
35 39
|
riotaeqbidv |
|- ( i = I -> ( iota_ g e. ( i i^i M ) ( D ` g ) = inf ( ( D " ( i \ { .0. } ) ) , RR , < ) ) = ( iota_ g e. ( I i^i M ) ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) |
41 |
34 40
|
ifbieq2d |
|- ( i = I -> if ( i = { .0. } , .0. , ( iota_ g e. ( i i^i M ) ( D ` g ) = inf ( ( D " ( i \ { .0. } ) ) , RR , < ) ) ) = if ( I = { .0. } , .0. , ( iota_ g e. ( I i^i M ) ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) ) |
42 |
|
eqid |
|- ( i e. U |-> if ( i = { .0. } , .0. , ( iota_ g e. ( i i^i M ) ( D ` g ) = inf ( ( D " ( i \ { .0. } ) ) , RR , < ) ) ) ) = ( i e. U |-> if ( i = { .0. } , .0. , ( iota_ g e. ( i i^i M ) ( D ` g ) = inf ( ( D " ( i \ { .0. } ) ) , RR , < ) ) ) ) |
43 |
3
|
fvexi |
|- .0. e. _V |
44 |
|
riotaex |
|- ( iota_ g e. ( I i^i M ) ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) e. _V |
45 |
43 44
|
ifex |
|- if ( I = { .0. } , .0. , ( iota_ g e. ( I i^i M ) ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) e. _V |
46 |
41 42 45
|
fvmpt |
|- ( I e. U -> ( ( i e. U |-> if ( i = { .0. } , .0. , ( iota_ g e. ( i i^i M ) ( D ` g ) = inf ( ( D " ( i \ { .0. } ) ) , RR , < ) ) ) ) ` I ) = if ( I = { .0. } , .0. , ( iota_ g e. ( I i^i M ) ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) ) |
47 |
33 46
|
sylan9eq |
|- ( ( R e. V /\ I e. U ) -> ( G ` I ) = if ( I = { .0. } , .0. , ( iota_ g e. ( I i^i M ) ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) ) |