Step |
Hyp |
Ref |
Expression |
1 |
|
ig1pval.p |
|- P = ( Poly1 ` R ) |
2 |
|
ig1pval.g |
|- G = ( idlGen1p ` R ) |
3 |
|
ig1pval3.z |
|- .0. = ( 0g ` P ) |
4 |
|
ig1pval3.u |
|- U = ( LIdeal ` P ) |
5 |
|
ig1pval3.d |
|- D = ( deg1 ` R ) |
6 |
|
ig1pval3.m |
|- M = ( Monic1p ` R ) |
7 |
1 2 3 4 5 6
|
ig1pval |
|- ( ( R e. DivRing /\ I e. U ) -> ( G ` I ) = if ( I = { .0. } , .0. , ( iota_ g e. ( I i^i M ) ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) ) |
8 |
7
|
3adant3 |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> ( G ` I ) = if ( I = { .0. } , .0. , ( iota_ g e. ( I i^i M ) ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) ) |
9 |
|
simp3 |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> I =/= { .0. } ) |
10 |
9
|
neneqd |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> -. I = { .0. } ) |
11 |
10
|
iffalsed |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> if ( I = { .0. } , .0. , ( iota_ g e. ( I i^i M ) ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) = ( iota_ g e. ( I i^i M ) ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) |
12 |
8 11
|
eqtrd |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> ( G ` I ) = ( iota_ g e. ( I i^i M ) ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) |
13 |
1 4 3 6 5
|
ig1peu |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> E! g e. ( I i^i M ) ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) |
14 |
|
riotacl2 |
|- ( E! g e. ( I i^i M ) ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) -> ( iota_ g e. ( I i^i M ) ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) e. { g e. ( I i^i M ) | ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) } ) |
15 |
13 14
|
syl |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> ( iota_ g e. ( I i^i M ) ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) e. { g e. ( I i^i M ) | ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) } ) |
16 |
12 15
|
eqeltrd |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> ( G ` I ) e. { g e. ( I i^i M ) | ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) } ) |
17 |
|
elin |
|- ( ( G ` I ) e. ( I i^i M ) <-> ( ( G ` I ) e. I /\ ( G ` I ) e. M ) ) |
18 |
17
|
anbi1i |
|- ( ( ( G ` I ) e. ( I i^i M ) /\ ( D ` ( G ` I ) ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) <-> ( ( ( G ` I ) e. I /\ ( G ` I ) e. M ) /\ ( D ` ( G ` I ) ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) |
19 |
|
fveqeq2 |
|- ( g = ( G ` I ) -> ( ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) <-> ( D ` ( G ` I ) ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) |
20 |
19
|
elrab |
|- ( ( G ` I ) e. { g e. ( I i^i M ) | ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) } <-> ( ( G ` I ) e. ( I i^i M ) /\ ( D ` ( G ` I ) ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) |
21 |
|
df-3an |
|- ( ( ( G ` I ) e. I /\ ( G ` I ) e. M /\ ( D ` ( G ` I ) ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) <-> ( ( ( G ` I ) e. I /\ ( G ` I ) e. M ) /\ ( D ` ( G ` I ) ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) |
22 |
18 20 21
|
3bitr4i |
|- ( ( G ` I ) e. { g e. ( I i^i M ) | ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) } <-> ( ( G ` I ) e. I /\ ( G ` I ) e. M /\ ( D ` ( G ` I ) ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) |
23 |
16 22
|
sylib |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> ( ( G ` I ) e. I /\ ( G ` I ) e. M /\ ( D ` ( G ` I ) ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) |