Metamath Proof Explorer


Theorem ige2m1fz1

Description: Membership of an integer greater than 1 decreased by 1 in a 1-based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018)

Ref Expression
Assertion ige2m1fz1
|- ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. ( 1 ... N ) )

Proof

Step Hyp Ref Expression
1 1e2m1
 |-  1 = ( 2 - 1 )
2 1 a1i
 |-  ( N e. ( ZZ>= ` 2 ) -> 1 = ( 2 - 1 ) )
3 2 oveq2d
 |-  ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) = ( N - ( 2 - 1 ) ) )
4 2nn
 |-  2 e. NN
5 uzsubsubfz1
 |-  ( ( 2 e. NN /\ N e. ( ZZ>= ` 2 ) ) -> ( N - ( 2 - 1 ) ) e. ( 1 ... N ) )
6 4 5 mpan
 |-  ( N e. ( ZZ>= ` 2 ) -> ( N - ( 2 - 1 ) ) e. ( 1 ... N ) )
7 3 6 eqeltrd
 |-  ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. ( 1 ... N ) )