Metamath Proof Explorer


Theorem ige2m2fzo

Description: Membership of an integer greater than 1 decreased by 2 in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 3-Oct-2018)

Ref Expression
Assertion ige2m2fzo
|- ( N e. ( ZZ>= ` 2 ) -> ( N - 2 ) e. ( 0 ..^ ( N - 1 ) ) )

Proof

Step Hyp Ref Expression
1 eluzel2
 |-  ( N e. ( ZZ>= ` 2 ) -> 2 e. ZZ )
2 1z
 |-  1 e. ZZ
3 1 2 jctir
 |-  ( N e. ( ZZ>= ` 2 ) -> ( 2 e. ZZ /\ 1 e. ZZ ) )
4 1lt2
 |-  1 < 2
5 4 jctr
 |-  ( N e. ( ZZ>= ` 2 ) -> ( N e. ( ZZ>= ` 2 ) /\ 1 < 2 ) )
6 eluzgtdifelfzo
 |-  ( ( 2 e. ZZ /\ 1 e. ZZ ) -> ( ( N e. ( ZZ>= ` 2 ) /\ 1 < 2 ) -> ( N - 2 ) e. ( 0 ..^ ( N - 1 ) ) ) )
7 3 5 6 sylc
 |-  ( N e. ( ZZ>= ` 2 ) -> ( N - 2 ) e. ( 0 ..^ ( N - 1 ) ) )