Metamath Proof Explorer


Theorem igz

Description: _i is a gaussian integer. (Contributed by Mario Carneiro, 14-Jul-2014)

Ref Expression
Assertion igz
|- _i e. Z[i]

Proof

Step Hyp Ref Expression
1 ax-icn
 |-  _i e. CC
2 rei
 |-  ( Re ` _i ) = 0
3 0z
 |-  0 e. ZZ
4 2 3 eqeltri
 |-  ( Re ` _i ) e. ZZ
5 imi
 |-  ( Im ` _i ) = 1
6 1z
 |-  1 e. ZZ
7 5 6 eqeltri
 |-  ( Im ` _i ) e. ZZ
8 elgz
 |-  ( _i e. Z[i] <-> ( _i e. CC /\ ( Re ` _i ) e. ZZ /\ ( Im ` _i ) e. ZZ ) )
9 1 4 7 8 mpbir3an
 |-  _i e. Z[i]