Step |
Hyp |
Ref |
Expression |
1 |
|
2re |
|- 2 e. RR |
2 |
|
remulcl |
|- ( ( 2 e. RR /\ X e. RR ) -> ( 2 x. X ) e. RR ) |
3 |
1 2
|
mpan |
|- ( X e. RR -> ( 2 x. X ) e. RR ) |
4 |
3
|
3ad2ant1 |
|- ( ( X e. RR /\ 0 <_ X /\ X <_ ( 1 / 2 ) ) -> ( 2 x. X ) e. RR ) |
5 |
|
0le2 |
|- 0 <_ 2 |
6 |
|
mulge0 |
|- ( ( ( 2 e. RR /\ 0 <_ 2 ) /\ ( X e. RR /\ 0 <_ X ) ) -> 0 <_ ( 2 x. X ) ) |
7 |
1 5 6
|
mpanl12 |
|- ( ( X e. RR /\ 0 <_ X ) -> 0 <_ ( 2 x. X ) ) |
8 |
7
|
3adant3 |
|- ( ( X e. RR /\ 0 <_ X /\ X <_ ( 1 / 2 ) ) -> 0 <_ ( 2 x. X ) ) |
9 |
|
1re |
|- 1 e. RR |
10 |
|
2pos |
|- 0 < 2 |
11 |
1 10
|
pm3.2i |
|- ( 2 e. RR /\ 0 < 2 ) |
12 |
|
lemuldiv2 |
|- ( ( X e. RR /\ 1 e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 2 x. X ) <_ 1 <-> X <_ ( 1 / 2 ) ) ) |
13 |
9 11 12
|
mp3an23 |
|- ( X e. RR -> ( ( 2 x. X ) <_ 1 <-> X <_ ( 1 / 2 ) ) ) |
14 |
13
|
biimpar |
|- ( ( X e. RR /\ X <_ ( 1 / 2 ) ) -> ( 2 x. X ) <_ 1 ) |
15 |
14
|
3adant2 |
|- ( ( X e. RR /\ 0 <_ X /\ X <_ ( 1 / 2 ) ) -> ( 2 x. X ) <_ 1 ) |
16 |
4 8 15
|
3jca |
|- ( ( X e. RR /\ 0 <_ X /\ X <_ ( 1 / 2 ) ) -> ( ( 2 x. X ) e. RR /\ 0 <_ ( 2 x. X ) /\ ( 2 x. X ) <_ 1 ) ) |
17 |
|
0re |
|- 0 e. RR |
18 |
|
halfre |
|- ( 1 / 2 ) e. RR |
19 |
17 18
|
elicc2i |
|- ( X e. ( 0 [,] ( 1 / 2 ) ) <-> ( X e. RR /\ 0 <_ X /\ X <_ ( 1 / 2 ) ) ) |
20 |
17 9
|
elicc2i |
|- ( ( 2 x. X ) e. ( 0 [,] 1 ) <-> ( ( 2 x. X ) e. RR /\ 0 <_ ( 2 x. X ) /\ ( 2 x. X ) <_ 1 ) ) |
21 |
16 19 20
|
3imtr4i |
|- ( X e. ( 0 [,] ( 1 / 2 ) ) -> ( 2 x. X ) e. ( 0 [,] 1 ) ) |