| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2re |  |-  2 e. RR | 
						
							| 2 |  | remulcl |  |-  ( ( 2 e. RR /\ X e. RR ) -> ( 2 x. X ) e. RR ) | 
						
							| 3 | 1 2 | mpan |  |-  ( X e. RR -> ( 2 x. X ) e. RR ) | 
						
							| 4 | 3 | 3ad2ant1 |  |-  ( ( X e. RR /\ 0 <_ X /\ X <_ ( 1 / 2 ) ) -> ( 2 x. X ) e. RR ) | 
						
							| 5 |  | 0le2 |  |-  0 <_ 2 | 
						
							| 6 |  | mulge0 |  |-  ( ( ( 2 e. RR /\ 0 <_ 2 ) /\ ( X e. RR /\ 0 <_ X ) ) -> 0 <_ ( 2 x. X ) ) | 
						
							| 7 | 1 5 6 | mpanl12 |  |-  ( ( X e. RR /\ 0 <_ X ) -> 0 <_ ( 2 x. X ) ) | 
						
							| 8 | 7 | 3adant3 |  |-  ( ( X e. RR /\ 0 <_ X /\ X <_ ( 1 / 2 ) ) -> 0 <_ ( 2 x. X ) ) | 
						
							| 9 |  | 1re |  |-  1 e. RR | 
						
							| 10 |  | 2pos |  |-  0 < 2 | 
						
							| 11 | 1 10 | pm3.2i |  |-  ( 2 e. RR /\ 0 < 2 ) | 
						
							| 12 |  | lemuldiv2 |  |-  ( ( X e. RR /\ 1 e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 2 x. X ) <_ 1 <-> X <_ ( 1 / 2 ) ) ) | 
						
							| 13 | 9 11 12 | mp3an23 |  |-  ( X e. RR -> ( ( 2 x. X ) <_ 1 <-> X <_ ( 1 / 2 ) ) ) | 
						
							| 14 | 13 | biimpar |  |-  ( ( X e. RR /\ X <_ ( 1 / 2 ) ) -> ( 2 x. X ) <_ 1 ) | 
						
							| 15 | 14 | 3adant2 |  |-  ( ( X e. RR /\ 0 <_ X /\ X <_ ( 1 / 2 ) ) -> ( 2 x. X ) <_ 1 ) | 
						
							| 16 | 4 8 15 | 3jca |  |-  ( ( X e. RR /\ 0 <_ X /\ X <_ ( 1 / 2 ) ) -> ( ( 2 x. X ) e. RR /\ 0 <_ ( 2 x. X ) /\ ( 2 x. X ) <_ 1 ) ) | 
						
							| 17 |  | 0re |  |-  0 e. RR | 
						
							| 18 |  | halfre |  |-  ( 1 / 2 ) e. RR | 
						
							| 19 | 17 18 | elicc2i |  |-  ( X e. ( 0 [,] ( 1 / 2 ) ) <-> ( X e. RR /\ 0 <_ X /\ X <_ ( 1 / 2 ) ) ) | 
						
							| 20 | 17 9 | elicc2i |  |-  ( ( 2 x. X ) e. ( 0 [,] 1 ) <-> ( ( 2 x. X ) e. RR /\ 0 <_ ( 2 x. X ) /\ ( 2 x. X ) <_ 1 ) ) | 
						
							| 21 | 16 19 20 | 3imtr4i |  |-  ( X e. ( 0 [,] ( 1 / 2 ) ) -> ( 2 x. X ) e. ( 0 [,] 1 ) ) |