Step |
Hyp |
Ref |
Expression |
1 |
|
iihalf1cn.1 |
|- J = ( ( topGen ` ran (,) ) |`t ( 0 [,] ( 1 / 2 ) ) ) |
2 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
3 |
|
dfii2 |
|- II = ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) |
4 |
|
0re |
|- 0 e. RR |
5 |
|
halfre |
|- ( 1 / 2 ) e. RR |
6 |
|
iccssre |
|- ( ( 0 e. RR /\ ( 1 / 2 ) e. RR ) -> ( 0 [,] ( 1 / 2 ) ) C_ RR ) |
7 |
4 5 6
|
mp2an |
|- ( 0 [,] ( 1 / 2 ) ) C_ RR |
8 |
7
|
a1i |
|- ( T. -> ( 0 [,] ( 1 / 2 ) ) C_ RR ) |
9 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
10 |
9
|
a1i |
|- ( T. -> ( 0 [,] 1 ) C_ RR ) |
11 |
|
iihalf1 |
|- ( x e. ( 0 [,] ( 1 / 2 ) ) -> ( 2 x. x ) e. ( 0 [,] 1 ) ) |
12 |
11
|
adantl |
|- ( ( T. /\ x e. ( 0 [,] ( 1 / 2 ) ) ) -> ( 2 x. x ) e. ( 0 [,] 1 ) ) |
13 |
2
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
14 |
13
|
a1i |
|- ( T. -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
15 |
|
2cnd |
|- ( T. -> 2 e. CC ) |
16 |
14 14 15
|
cnmptc |
|- ( T. -> ( x e. CC |-> 2 ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
17 |
14
|
cnmptid |
|- ( T. -> ( x e. CC |-> x ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
18 |
2
|
mulcn |
|- x. e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
19 |
18
|
a1i |
|- ( T. -> x. e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
20 |
14 16 17 19
|
cnmpt12f |
|- ( T. -> ( x e. CC |-> ( 2 x. x ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
21 |
2 1 3 8 10 12 20
|
cnmptre |
|- ( T. -> ( x e. ( 0 [,] ( 1 / 2 ) ) |-> ( 2 x. x ) ) e. ( J Cn II ) ) |
22 |
21
|
mptru |
|- ( x e. ( 0 [,] ( 1 / 2 ) ) |-> ( 2 x. x ) ) e. ( J Cn II ) |