Step |
Hyp |
Ref |
Expression |
1 |
|
iihalf2cn.1 |
|- J = ( ( topGen ` ran (,) ) |`t ( ( 1 / 2 ) [,] 1 ) ) |
2 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
3 |
|
dfii2 |
|- II = ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) |
4 |
|
halfre |
|- ( 1 / 2 ) e. RR |
5 |
|
1red |
|- ( T. -> 1 e. RR ) |
6 |
|
iccssre |
|- ( ( ( 1 / 2 ) e. RR /\ 1 e. RR ) -> ( ( 1 / 2 ) [,] 1 ) C_ RR ) |
7 |
4 5 6
|
sylancr |
|- ( T. -> ( ( 1 / 2 ) [,] 1 ) C_ RR ) |
8 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
9 |
8
|
a1i |
|- ( T. -> ( 0 [,] 1 ) C_ RR ) |
10 |
|
iihalf2 |
|- ( x e. ( ( 1 / 2 ) [,] 1 ) -> ( ( 2 x. x ) - 1 ) e. ( 0 [,] 1 ) ) |
11 |
10
|
adantl |
|- ( ( T. /\ x e. ( ( 1 / 2 ) [,] 1 ) ) -> ( ( 2 x. x ) - 1 ) e. ( 0 [,] 1 ) ) |
12 |
2
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
13 |
12
|
a1i |
|- ( T. -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
14 |
|
2cnd |
|- ( T. -> 2 e. CC ) |
15 |
13 13 14
|
cnmptc |
|- ( T. -> ( x e. CC |-> 2 ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
16 |
13
|
cnmptid |
|- ( T. -> ( x e. CC |-> x ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
17 |
2
|
mpomulcn |
|- ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
18 |
17
|
a1i |
|- ( T. -> ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
19 |
|
oveq12 |
|- ( ( u = 2 /\ v = x ) -> ( u x. v ) = ( 2 x. x ) ) |
20 |
13 15 16 13 13 18 19
|
cnmpt12 |
|- ( T. -> ( x e. CC |-> ( 2 x. x ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
21 |
|
1cnd |
|- ( T. -> 1 e. CC ) |
22 |
13 13 21
|
cnmptc |
|- ( T. -> ( x e. CC |-> 1 ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
23 |
2
|
subcn |
|- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
24 |
23
|
a1i |
|- ( T. -> - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
25 |
13 20 22 24
|
cnmpt12f |
|- ( T. -> ( x e. CC |-> ( ( 2 x. x ) - 1 ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
26 |
2 1 3 7 9 11 25
|
cnmptre |
|- ( T. -> ( x e. ( ( 1 / 2 ) [,] 1 ) |-> ( ( 2 x. x ) - 1 ) ) e. ( J Cn II ) ) |
27 |
26
|
mptru |
|- ( x e. ( ( 1 / 2 ) [,] 1 ) |-> ( ( 2 x. x ) - 1 ) ) e. ( J Cn II ) |