Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
2 |
1
|
dfii3 |
|- II = ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) |
3 |
1
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
4 |
3
|
a1i |
|- ( T. -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
5 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
6 |
|
ax-resscn |
|- RR C_ CC |
7 |
5 6
|
sstri |
|- ( 0 [,] 1 ) C_ CC |
8 |
7
|
a1i |
|- ( T. -> ( 0 [,] 1 ) C_ CC ) |
9 |
|
ax-mulf |
|- x. : ( CC X. CC ) --> CC |
10 |
|
ffn |
|- ( x. : ( CC X. CC ) --> CC -> x. Fn ( CC X. CC ) ) |
11 |
9 10
|
ax-mp |
|- x. Fn ( CC X. CC ) |
12 |
|
fnov |
|- ( x. Fn ( CC X. CC ) <-> x. = ( x e. CC , y e. CC |-> ( x x. y ) ) ) |
13 |
11 12
|
mpbi |
|- x. = ( x e. CC , y e. CC |-> ( x x. y ) ) |
14 |
1
|
mulcn |
|- x. e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
15 |
13 14
|
eqeltrri |
|- ( x e. CC , y e. CC |-> ( x x. y ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
16 |
15
|
a1i |
|- ( T. -> ( x e. CC , y e. CC |-> ( x x. y ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
17 |
2 4 8 2 4 8 16
|
cnmpt2res |
|- ( T. -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) ) |
18 |
17
|
mptru |
|- ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) |
19 |
|
iimulcl |
|- ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) -> ( x x. y ) e. ( 0 [,] 1 ) ) |
20 |
19
|
rgen2 |
|- A. x e. ( 0 [,] 1 ) A. y e. ( 0 [,] 1 ) ( x x. y ) e. ( 0 [,] 1 ) |
21 |
|
eqid |
|- ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) |
22 |
21
|
fmpo |
|- ( A. x e. ( 0 [,] 1 ) A. y e. ( 0 [,] 1 ) ( x x. y ) e. ( 0 [,] 1 ) <-> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> ( 0 [,] 1 ) ) |
23 |
|
frn |
|- ( ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> ( 0 [,] 1 ) -> ran ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) C_ ( 0 [,] 1 ) ) |
24 |
22 23
|
sylbi |
|- ( A. x e. ( 0 [,] 1 ) A. y e. ( 0 [,] 1 ) ( x x. y ) e. ( 0 [,] 1 ) -> ran ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) C_ ( 0 [,] 1 ) ) |
25 |
20 24
|
ax-mp |
|- ran ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) C_ ( 0 [,] 1 ) |
26 |
|
cnrest2 |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) C_ ( 0 [,] 1 ) /\ ( 0 [,] 1 ) C_ CC ) -> ( ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) <-> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) ) ) |
27 |
3 25 7 26
|
mp3an |
|- ( ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) <-> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) ) |
28 |
18 27
|
mpbi |
|- ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) |
29 |
2
|
oveq2i |
|- ( ( II tX II ) Cn II ) = ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) |
30 |
28 29
|
eleqtrri |
|- ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn II ) |