Step |
Hyp |
Ref |
Expression |
1 |
|
iinconst |
|- ( A =/= (/) -> |^|_ x e. A (/) = (/) ) |
2 |
|
0ex |
|- (/) e. _V |
3 |
2
|
n0ii |
|- -. _V = (/) |
4 |
|
0iin |
|- |^|_ x e. (/) (/) = _V |
5 |
4
|
eqeq1i |
|- ( |^|_ x e. (/) (/) = (/) <-> _V = (/) ) |
6 |
3 5
|
mtbir |
|- -. |^|_ x e. (/) (/) = (/) |
7 |
|
iineq1 |
|- ( A = (/) -> |^|_ x e. A (/) = |^|_ x e. (/) (/) ) |
8 |
7
|
eqeq1d |
|- ( A = (/) -> ( |^|_ x e. A (/) = (/) <-> |^|_ x e. (/) (/) = (/) ) ) |
9 |
6 8
|
mtbiri |
|- ( A = (/) -> -. |^|_ x e. A (/) = (/) ) |
10 |
9
|
necon2ai |
|- ( |^|_ x e. A (/) = (/) -> A =/= (/) ) |
11 |
1 10
|
impbii |
|- ( A =/= (/) <-> |^|_ x e. A (/) = (/) ) |