| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iinconst |
|- ( A =/= (/) -> |^|_ x e. A (/) = (/) ) |
| 2 |
|
0ex |
|- (/) e. _V |
| 3 |
2
|
n0ii |
|- -. _V = (/) |
| 4 |
|
0iin |
|- |^|_ x e. (/) (/) = _V |
| 5 |
4
|
eqeq1i |
|- ( |^|_ x e. (/) (/) = (/) <-> _V = (/) ) |
| 6 |
3 5
|
mtbir |
|- -. |^|_ x e. (/) (/) = (/) |
| 7 |
|
iineq1 |
|- ( A = (/) -> |^|_ x e. A (/) = |^|_ x e. (/) (/) ) |
| 8 |
7
|
eqeq1d |
|- ( A = (/) -> ( |^|_ x e. A (/) = (/) <-> |^|_ x e. (/) (/) = (/) ) ) |
| 9 |
6 8
|
mtbiri |
|- ( A = (/) -> -. |^|_ x e. A (/) = (/) ) |
| 10 |
9
|
necon2ai |
|- ( |^|_ x e. A (/) = (/) -> A =/= (/) ) |
| 11 |
1 10
|
impbii |
|- ( A =/= (/) <-> |^|_ x e. A (/) = (/) ) |