Metamath Proof Explorer


Theorem iineq1

Description: Equality theorem for indexed intersection. (Contributed by NM, 27-Jun-1998)

Ref Expression
Assertion iineq1
|- ( A = B -> |^|_ x e. A C = |^|_ x e. B C )

Proof

Step Hyp Ref Expression
1 raleq
 |-  ( A = B -> ( A. x e. A y e. C <-> A. x e. B y e. C ) )
2 1 abbidv
 |-  ( A = B -> { y | A. x e. A y e. C } = { y | A. x e. B y e. C } )
3 df-iin
 |-  |^|_ x e. A C = { y | A. x e. A y e. C }
4 df-iin
 |-  |^|_ x e. B C = { y | A. x e. B y e. C }
5 2 3 4 3eqtr4g
 |-  ( A = B -> |^|_ x e. A C = |^|_ x e. B C )