Description: Equality theorem for indexed intersection. (Contributed by NM, 27-Jun-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | iineq1 | |- ( A = B -> |^|_ x e. A C = |^|_ x e. B C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq | |- ( A = B -> ( A. x e. A y e. C <-> A. x e. B y e. C ) ) |
|
2 | 1 | abbidv | |- ( A = B -> { y | A. x e. A y e. C } = { y | A. x e. B y e. C } ) |
3 | df-iin | |- |^|_ x e. A C = { y | A. x e. A y e. C } |
|
4 | df-iin | |- |^|_ x e. B C = { y | A. x e. B y e. C } |
|
5 | 2 3 4 | 3eqtr4g | |- ( A = B -> |^|_ x e. A C = |^|_ x e. B C ) |