Metamath Proof Explorer


Theorem iineq12dv

Description: Equality deduction for indexed intersection. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses iineq12dv.1
|- ( ph -> A = B )
iineq12dv.2
|- ( ( ph /\ x e. B ) -> C = D )
Assertion iineq12dv
|- ( ph -> |^|_ x e. A C = |^|_ x e. B D )

Proof

Step Hyp Ref Expression
1 iineq12dv.1
 |-  ( ph -> A = B )
2 iineq12dv.2
 |-  ( ( ph /\ x e. B ) -> C = D )
3 1 iineq1d
 |-  ( ph -> |^|_ x e. A C = |^|_ x e. B C )
4 2 iineq2dv
 |-  ( ph -> |^|_ x e. B C = |^|_ x e. B D )
5 3 4 eqtrd
 |-  ( ph -> |^|_ x e. A C = |^|_ x e. B D )