Description: Equality deduction for indexed intersection. (Contributed by NM, 7-Dec-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iineq2d.1 | |- F/ x ph |
|
iineq2d.2 | |- ( ( ph /\ x e. A ) -> B = C ) |
||
Assertion | iineq2d | |- ( ph -> |^|_ x e. A B = |^|_ x e. A C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iineq2d.1 | |- F/ x ph |
|
2 | iineq2d.2 | |- ( ( ph /\ x e. A ) -> B = C ) |
|
3 | 2 | ex | |- ( ph -> ( x e. A -> B = C ) ) |
4 | 1 3 | ralrimi | |- ( ph -> A. x e. A B = C ) |
5 | iineq2 | |- ( A. x e. A B = C -> |^|_ x e. A B = |^|_ x e. A C ) |
|
6 | 4 5 | syl | |- ( ph -> |^|_ x e. A B = |^|_ x e. A C ) |