Metamath Proof Explorer


Theorem iinin1

Description: Indexed intersection of intersection. Generalization of half of theorem "Distributive laws" in Enderton p. 30. Use intiin to recover Enderton's theorem. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Assertion iinin1
|- ( A =/= (/) -> |^|_ x e. A ( C i^i B ) = ( |^|_ x e. A C i^i B ) )

Proof

Step Hyp Ref Expression
1 iinin2
 |-  ( A =/= (/) -> |^|_ x e. A ( B i^i C ) = ( B i^i |^|_ x e. A C ) )
2 incom
 |-  ( C i^i B ) = ( B i^i C )
3 2 a1i
 |-  ( x e. A -> ( C i^i B ) = ( B i^i C ) )
4 3 iineq2i
 |-  |^|_ x e. A ( C i^i B ) = |^|_ x e. A ( B i^i C )
5 incom
 |-  ( |^|_ x e. A C i^i B ) = ( B i^i |^|_ x e. A C )
6 1 4 5 3eqtr4g
 |-  ( A =/= (/) -> |^|_ x e. A ( C i^i B ) = ( |^|_ x e. A C i^i B ) )