| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfiin3g |
|- ( A. x e. A B e. On -> |^|_ x e. A B = |^| ran ( x e. A |-> B ) ) |
| 2 |
1
|
adantr |
|- ( ( A. x e. A B e. On /\ A =/= (/) ) -> |^|_ x e. A B = |^| ran ( x e. A |-> B ) ) |
| 3 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
| 4 |
3
|
rnmptss |
|- ( A. x e. A B e. On -> ran ( x e. A |-> B ) C_ On ) |
| 5 |
|
dm0rn0 |
|- ( dom ( x e. A |-> B ) = (/) <-> ran ( x e. A |-> B ) = (/) ) |
| 6 |
|
dmmptg |
|- ( A. x e. A B e. On -> dom ( x e. A |-> B ) = A ) |
| 7 |
6
|
eqeq1d |
|- ( A. x e. A B e. On -> ( dom ( x e. A |-> B ) = (/) <-> A = (/) ) ) |
| 8 |
5 7
|
bitr3id |
|- ( A. x e. A B e. On -> ( ran ( x e. A |-> B ) = (/) <-> A = (/) ) ) |
| 9 |
8
|
necon3bid |
|- ( A. x e. A B e. On -> ( ran ( x e. A |-> B ) =/= (/) <-> A =/= (/) ) ) |
| 10 |
9
|
biimpar |
|- ( ( A. x e. A B e. On /\ A =/= (/) ) -> ran ( x e. A |-> B ) =/= (/) ) |
| 11 |
|
oninton |
|- ( ( ran ( x e. A |-> B ) C_ On /\ ran ( x e. A |-> B ) =/= (/) ) -> |^| ran ( x e. A |-> B ) e. On ) |
| 12 |
4 10 11
|
syl2an2r |
|- ( ( A. x e. A B e. On /\ A =/= (/) ) -> |^| ran ( x e. A |-> B ) e. On ) |
| 13 |
2 12
|
eqeltrd |
|- ( ( A. x e. A B e. On /\ A =/= (/) ) -> |^|_ x e. A B e. On ) |