Step |
Hyp |
Ref |
Expression |
1 |
|
dfiin3g |
|- ( A. x e. A B e. On -> |^|_ x e. A B = |^| ran ( x e. A |-> B ) ) |
2 |
1
|
adantr |
|- ( ( A. x e. A B e. On /\ A =/= (/) ) -> |^|_ x e. A B = |^| ran ( x e. A |-> B ) ) |
3 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
4 |
3
|
rnmptss |
|- ( A. x e. A B e. On -> ran ( x e. A |-> B ) C_ On ) |
5 |
|
dm0rn0 |
|- ( dom ( x e. A |-> B ) = (/) <-> ran ( x e. A |-> B ) = (/) ) |
6 |
|
dmmptg |
|- ( A. x e. A B e. On -> dom ( x e. A |-> B ) = A ) |
7 |
6
|
eqeq1d |
|- ( A. x e. A B e. On -> ( dom ( x e. A |-> B ) = (/) <-> A = (/) ) ) |
8 |
5 7
|
bitr3id |
|- ( A. x e. A B e. On -> ( ran ( x e. A |-> B ) = (/) <-> A = (/) ) ) |
9 |
8
|
necon3bid |
|- ( A. x e. A B e. On -> ( ran ( x e. A |-> B ) =/= (/) <-> A =/= (/) ) ) |
10 |
9
|
biimpar |
|- ( ( A. x e. A B e. On /\ A =/= (/) ) -> ran ( x e. A |-> B ) =/= (/) ) |
11 |
|
oninton |
|- ( ( ran ( x e. A |-> B ) C_ On /\ ran ( x e. A |-> B ) =/= (/) ) -> |^| ran ( x e. A |-> B ) e. On ) |
12 |
4 10 11
|
syl2an2r |
|- ( ( A. x e. A B e. On /\ A =/= (/) ) -> |^| ran ( x e. A |-> B ) e. On ) |
13 |
2 12
|
eqeltrd |
|- ( ( A. x e. A B e. On /\ A =/= (/) ) -> |^|_ x e. A B e. On ) |