Metamath Proof Explorer


Theorem iinss2

Description: An indexed intersection is included in any of its members. (Contributed by FL, 15-Oct-2012)

Ref Expression
Assertion iinss2
|- ( x e. A -> |^|_ x e. A B C_ B )

Proof

Step Hyp Ref Expression
1 eliin
 |-  ( y e. _V -> ( y e. |^|_ x e. A B <-> A. x e. A y e. B ) )
2 1 elv
 |-  ( y e. |^|_ x e. A B <-> A. x e. A y e. B )
3 rsp
 |-  ( A. x e. A y e. B -> ( x e. A -> y e. B ) )
4 3 com12
 |-  ( x e. A -> ( A. x e. A y e. B -> y e. B ) )
5 2 4 syl5bi
 |-  ( x e. A -> ( y e. |^|_ x e. A B -> y e. B ) )
6 5 ssrdv
 |-  ( x e. A -> |^|_ x e. A B C_ B )