Step |
Hyp |
Ref |
Expression |
1 |
|
iinss2d.1 |
|- F/ x ph |
2 |
|
iinss2d.2 |
|- F/_ x A |
3 |
|
iinss2d.3 |
|- F/_ x C |
4 |
|
iinss2d.4 |
|- ( ph -> A =/= (/) ) |
5 |
|
iinss2d.5 |
|- ( ( ph /\ x e. A ) -> B C_ C ) |
6 |
5
|
3adant3 |
|- ( ( ph /\ x e. A /\ T. ) -> B C_ C ) |
7 |
2
|
n0f |
|- ( A =/= (/) <-> E. x x e. A ) |
8 |
4 7
|
sylib |
|- ( ph -> E. x x e. A ) |
9 |
|
rextru |
|- ( E. x x e. A <-> E. x e. A T. ) |
10 |
8 9
|
sylib |
|- ( ph -> E. x e. A T. ) |
11 |
1 6 10
|
reximdd |
|- ( ph -> E. x e. A B C_ C ) |
12 |
3
|
iinssf |
|- ( E. x e. A B C_ C -> |^|_ x e. A B C_ C ) |
13 |
11 12
|
syl |
|- ( ph -> |^|_ x e. A B C_ C ) |