| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dif0 |
|- ( _V \ (/) ) = _V |
| 2 |
|
0iun |
|- U_ x e. (/) B = (/) |
| 3 |
2
|
difeq2i |
|- ( _V \ U_ x e. (/) B ) = ( _V \ (/) ) |
| 4 |
|
0iin |
|- |^|_ x e. (/) ( _V \ B ) = _V |
| 5 |
1 3 4
|
3eqtr4ri |
|- |^|_ x e. (/) ( _V \ B ) = ( _V \ U_ x e. (/) B ) |
| 6 |
|
iineq1 |
|- ( A = (/) -> |^|_ x e. A ( _V \ B ) = |^|_ x e. (/) ( _V \ B ) ) |
| 7 |
|
iuneq1 |
|- ( A = (/) -> U_ x e. A B = U_ x e. (/) B ) |
| 8 |
7
|
difeq2d |
|- ( A = (/) -> ( _V \ U_ x e. A B ) = ( _V \ U_ x e. (/) B ) ) |
| 9 |
5 6 8
|
3eqtr4a |
|- ( A = (/) -> |^|_ x e. A ( _V \ B ) = ( _V \ U_ x e. A B ) ) |
| 10 |
|
iindif2 |
|- ( A =/= (/) -> |^|_ x e. A ( _V \ B ) = ( _V \ U_ x e. A B ) ) |
| 11 |
9 10
|
pm2.61ine |
|- |^|_ x e. A ( _V \ B ) = ( _V \ U_ x e. A B ) |