Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
2 |
|
dfii2 |
|- II = ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) |
3 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
4 |
3
|
a1i |
|- ( T. -> ( 0 [,] 1 ) C_ RR ) |
5 |
|
iirev |
|- ( x e. ( 0 [,] 1 ) -> ( 1 - x ) e. ( 0 [,] 1 ) ) |
6 |
5
|
adantl |
|- ( ( T. /\ x e. ( 0 [,] 1 ) ) -> ( 1 - x ) e. ( 0 [,] 1 ) ) |
7 |
1
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
8 |
7
|
a1i |
|- ( T. -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
9 |
|
1cnd |
|- ( T. -> 1 e. CC ) |
10 |
8 8 9
|
cnmptc |
|- ( T. -> ( x e. CC |-> 1 ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
11 |
8
|
cnmptid |
|- ( T. -> ( x e. CC |-> x ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
12 |
1
|
subcn |
|- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
13 |
12
|
a1i |
|- ( T. -> - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
14 |
8 10 11 13
|
cnmpt12f |
|- ( T. -> ( x e. CC |-> ( 1 - x ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
15 |
1 2 2 4 4 6 14
|
cnmptre |
|- ( T. -> ( x e. ( 0 [,] 1 ) |-> ( 1 - x ) ) e. ( II Cn II ) ) |
16 |
15
|
mptru |
|- ( x e. ( 0 [,] 1 ) |-> ( 1 - x ) ) e. ( II Cn II ) |