Metamath Proof Explorer


Theorem iirevcn

Description: The reversion function is a continuous map of the unit interval. (Contributed by Mario Carneiro, 6-Jun-2014)

Ref Expression
Assertion iirevcn
|- ( x e. ( 0 [,] 1 ) |-> ( 1 - x ) ) e. ( II Cn II )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld )
2 dfii2
 |-  II = ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) )
3 unitssre
 |-  ( 0 [,] 1 ) C_ RR
4 3 a1i
 |-  ( T. -> ( 0 [,] 1 ) C_ RR )
5 iirev
 |-  ( x e. ( 0 [,] 1 ) -> ( 1 - x ) e. ( 0 [,] 1 ) )
6 5 adantl
 |-  ( ( T. /\ x e. ( 0 [,] 1 ) ) -> ( 1 - x ) e. ( 0 [,] 1 ) )
7 1 cnfldtopon
 |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC )
8 7 a1i
 |-  ( T. -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) )
9 1cnd
 |-  ( T. -> 1 e. CC )
10 8 8 9 cnmptc
 |-  ( T. -> ( x e. CC |-> 1 ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) )
11 8 cnmptid
 |-  ( T. -> ( x e. CC |-> x ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) )
12 1 subcn
 |-  - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) )
13 12 a1i
 |-  ( T. -> - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) )
14 8 10 11 13 cnmpt12f
 |-  ( T. -> ( x e. CC |-> ( 1 - x ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) )
15 1 2 2 4 4 6 14 cnmptre
 |-  ( T. -> ( x e. ( 0 [,] 1 ) |-> ( 1 - x ) ) e. ( II Cn II ) )
16 15 mptru
 |-  ( x e. ( 0 [,] 1 ) |-> ( 1 - x ) ) e. ( II Cn II )