Metamath Proof Explorer


Theorem iitop

Description: The unit interval is a topological space. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion iitop
|- II e. Top

Proof

Step Hyp Ref Expression
1 iitopon
 |-  II e. ( TopOn ` ( 0 [,] 1 ) )
2 1 topontopi
 |-  II e. Top