Step |
Hyp |
Ref |
Expression |
1 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
2 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
3 |
|
ax-resscn |
|- RR C_ CC |
4 |
2 3
|
sstri |
|- ( 0 [,] 1 ) C_ CC |
5 |
|
xmetres2 |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ ( 0 [,] 1 ) C_ CC ) -> ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) e. ( *Met ` ( 0 [,] 1 ) ) ) |
6 |
1 4 5
|
mp2an |
|- ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) e. ( *Met ` ( 0 [,] 1 ) ) |
7 |
|
df-ii |
|- II = ( MetOpen ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) |
8 |
7
|
mopntopon |
|- ( ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) e. ( *Met ` ( 0 [,] 1 ) ) -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) |
9 |
6 8
|
ax-mp |
|- II e. ( TopOn ` ( 0 [,] 1 ) ) |