Description: Deduction joining nested implications to form implication of conjunctions. (Contributed by NM, 29-Feb-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | im2an9.1 | |- ( ph -> ( ps -> ch ) ) |
|
| im2an9.2 | |- ( th -> ( ta -> et ) ) |
||
| Assertion | im2anan9 | |- ( ( ph /\ th ) -> ( ( ps /\ ta ) -> ( ch /\ et ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | im2an9.1 | |- ( ph -> ( ps -> ch ) ) |
|
| 2 | im2an9.2 | |- ( th -> ( ta -> et ) ) |
|
| 3 | 1 | adantrd | |- ( ph -> ( ( ps /\ ta ) -> ch ) ) |
| 4 | 2 | adantld | |- ( th -> ( ( ps /\ ta ) -> et ) ) |
| 5 | 3 4 | anim12ii | |- ( ( ph /\ th ) -> ( ( ps /\ ta ) -> ( ch /\ et ) ) ) |