| Step | Hyp | Ref | Expression | 
						
							| 1 |  | suppco |  |-  ( ( F e. V /\ G e. W ) -> ( ( F o. G ) supp Z ) = ( `' G " ( F supp Z ) ) ) | 
						
							| 2 | 1 | imaeq2d |  |-  ( ( F e. V /\ G e. W ) -> ( G " ( ( F o. G ) supp Z ) ) = ( G " ( `' G " ( F supp Z ) ) ) ) | 
						
							| 3 |  | funforn |  |-  ( Fun G <-> G : dom G -onto-> ran G ) | 
						
							| 4 |  | foimacnv |  |-  ( ( G : dom G -onto-> ran G /\ ( F supp Z ) C_ ran G ) -> ( G " ( `' G " ( F supp Z ) ) ) = ( F supp Z ) ) | 
						
							| 5 | 3 4 | sylanb |  |-  ( ( Fun G /\ ( F supp Z ) C_ ran G ) -> ( G " ( `' G " ( F supp Z ) ) ) = ( F supp Z ) ) | 
						
							| 6 | 2 5 | sylan9eq |  |-  ( ( ( F e. V /\ G e. W ) /\ ( Fun G /\ ( F supp Z ) C_ ran G ) ) -> ( G " ( ( F o. G ) supp Z ) ) = ( F supp Z ) ) | 
						
							| 7 | 6 | ex |  |-  ( ( F e. V /\ G e. W ) -> ( ( Fun G /\ ( F supp Z ) C_ ran G ) -> ( G " ( ( F o. G ) supp Z ) ) = ( F supp Z ) ) ) |