Step |
Hyp |
Ref |
Expression |
1 |
|
suppco |
|- ( ( F e. V /\ G e. W ) -> ( ( F o. G ) supp Z ) = ( `' G " ( F supp Z ) ) ) |
2 |
1
|
imaeq2d |
|- ( ( F e. V /\ G e. W ) -> ( G " ( ( F o. G ) supp Z ) ) = ( G " ( `' G " ( F supp Z ) ) ) ) |
3 |
|
funforn |
|- ( Fun G <-> G : dom G -onto-> ran G ) |
4 |
|
foimacnv |
|- ( ( G : dom G -onto-> ran G /\ ( F supp Z ) C_ ran G ) -> ( G " ( `' G " ( F supp Z ) ) ) = ( F supp Z ) ) |
5 |
3 4
|
sylanb |
|- ( ( Fun G /\ ( F supp Z ) C_ ran G ) -> ( G " ( `' G " ( F supp Z ) ) ) = ( F supp Z ) ) |
6 |
2 5
|
sylan9eq |
|- ( ( ( F e. V /\ G e. W ) /\ ( Fun G /\ ( F supp Z ) C_ ran G ) ) -> ( G " ( ( F o. G ) supp Z ) ) = ( F supp Z ) ) |
7 |
6
|
ex |
|- ( ( F e. V /\ G e. W ) -> ( ( Fun G /\ ( F supp Z ) C_ ran G ) -> ( G " ( ( F o. G ) supp Z ) ) = ( F supp Z ) ) ) |