Step |
Hyp |
Ref |
Expression |
1 |
|
df-ima |
|- ( F " ( dom F \ A ) ) = ran ( F |` ( dom F \ A ) ) |
2 |
1
|
sseq1i |
|- ( ( F " ( dom F \ A ) ) C_ ran ( F |` A ) <-> ran ( F |` ( dom F \ A ) ) C_ ran ( F |` A ) ) |
3 |
|
ssel |
|- ( ran ( F |` ( dom F \ A ) ) C_ ran ( F |` A ) -> ( y e. ran ( F |` ( dom F \ A ) ) -> y e. ran ( F |` A ) ) ) |
4 |
|
resdm |
|- ( Rel F -> ( F |` dom F ) = F ) |
5 |
4
|
eqcomd |
|- ( Rel F -> F = ( F |` dom F ) ) |
6 |
5
|
adantr |
|- ( ( Rel F /\ A C_ dom F ) -> F = ( F |` dom F ) ) |
7 |
6
|
rneqd |
|- ( ( Rel F /\ A C_ dom F ) -> ran F = ran ( F |` dom F ) ) |
8 |
7
|
eleq2d |
|- ( ( Rel F /\ A C_ dom F ) -> ( y e. ran F <-> y e. ran ( F |` dom F ) ) ) |
9 |
|
undif |
|- ( A C_ dom F <-> ( A u. ( dom F \ A ) ) = dom F ) |
10 |
9
|
biimpi |
|- ( A C_ dom F -> ( A u. ( dom F \ A ) ) = dom F ) |
11 |
10
|
eqcomd |
|- ( A C_ dom F -> dom F = ( A u. ( dom F \ A ) ) ) |
12 |
11
|
reseq2d |
|- ( A C_ dom F -> ( F |` dom F ) = ( F |` ( A u. ( dom F \ A ) ) ) ) |
13 |
|
resundi |
|- ( F |` ( A u. ( dom F \ A ) ) ) = ( ( F |` A ) u. ( F |` ( dom F \ A ) ) ) |
14 |
12 13
|
eqtrdi |
|- ( A C_ dom F -> ( F |` dom F ) = ( ( F |` A ) u. ( F |` ( dom F \ A ) ) ) ) |
15 |
14
|
rneqd |
|- ( A C_ dom F -> ran ( F |` dom F ) = ran ( ( F |` A ) u. ( F |` ( dom F \ A ) ) ) ) |
16 |
|
rnun |
|- ran ( ( F |` A ) u. ( F |` ( dom F \ A ) ) ) = ( ran ( F |` A ) u. ran ( F |` ( dom F \ A ) ) ) |
17 |
15 16
|
eqtrdi |
|- ( A C_ dom F -> ran ( F |` dom F ) = ( ran ( F |` A ) u. ran ( F |` ( dom F \ A ) ) ) ) |
18 |
17
|
eleq2d |
|- ( A C_ dom F -> ( y e. ran ( F |` dom F ) <-> y e. ( ran ( F |` A ) u. ran ( F |` ( dom F \ A ) ) ) ) ) |
19 |
|
elun |
|- ( y e. ( ran ( F |` A ) u. ran ( F |` ( dom F \ A ) ) ) <-> ( y e. ran ( F |` A ) \/ y e. ran ( F |` ( dom F \ A ) ) ) ) |
20 |
18 19
|
bitrdi |
|- ( A C_ dom F -> ( y e. ran ( F |` dom F ) <-> ( y e. ran ( F |` A ) \/ y e. ran ( F |` ( dom F \ A ) ) ) ) ) |
21 |
20
|
adantl |
|- ( ( Rel F /\ A C_ dom F ) -> ( y e. ran ( F |` dom F ) <-> ( y e. ran ( F |` A ) \/ y e. ran ( F |` ( dom F \ A ) ) ) ) ) |
22 |
8 21
|
bitrd |
|- ( ( Rel F /\ A C_ dom F ) -> ( y e. ran F <-> ( y e. ran ( F |` A ) \/ y e. ran ( F |` ( dom F \ A ) ) ) ) ) |
23 |
22
|
adantl |
|- ( ( ( y e. ran ( F |` ( dom F \ A ) ) -> y e. ran ( F |` A ) ) /\ ( Rel F /\ A C_ dom F ) ) -> ( y e. ran F <-> ( y e. ran ( F |` A ) \/ y e. ran ( F |` ( dom F \ A ) ) ) ) ) |
24 |
|
pm2.27 |
|- ( y e. ran ( F |` ( dom F \ A ) ) -> ( ( y e. ran ( F |` ( dom F \ A ) ) -> y e. ran ( F |` A ) ) -> y e. ran ( F |` A ) ) ) |
25 |
24
|
jao1i |
|- ( ( y e. ran ( F |` A ) \/ y e. ran ( F |` ( dom F \ A ) ) ) -> ( ( y e. ran ( F |` ( dom F \ A ) ) -> y e. ran ( F |` A ) ) -> y e. ran ( F |` A ) ) ) |
26 |
25
|
com12 |
|- ( ( y e. ran ( F |` ( dom F \ A ) ) -> y e. ran ( F |` A ) ) -> ( ( y e. ran ( F |` A ) \/ y e. ran ( F |` ( dom F \ A ) ) ) -> y e. ran ( F |` A ) ) ) |
27 |
26
|
adantr |
|- ( ( ( y e. ran ( F |` ( dom F \ A ) ) -> y e. ran ( F |` A ) ) /\ ( Rel F /\ A C_ dom F ) ) -> ( ( y e. ran ( F |` A ) \/ y e. ran ( F |` ( dom F \ A ) ) ) -> y e. ran ( F |` A ) ) ) |
28 |
23 27
|
sylbid |
|- ( ( ( y e. ran ( F |` ( dom F \ A ) ) -> y e. ran ( F |` A ) ) /\ ( Rel F /\ A C_ dom F ) ) -> ( y e. ran F -> y e. ran ( F |` A ) ) ) |
29 |
28
|
ex |
|- ( ( y e. ran ( F |` ( dom F \ A ) ) -> y e. ran ( F |` A ) ) -> ( ( Rel F /\ A C_ dom F ) -> ( y e. ran F -> y e. ran ( F |` A ) ) ) ) |
30 |
3 29
|
syl |
|- ( ran ( F |` ( dom F \ A ) ) C_ ran ( F |` A ) -> ( ( Rel F /\ A C_ dom F ) -> ( y e. ran F -> y e. ran ( F |` A ) ) ) ) |
31 |
30
|
impcom |
|- ( ( ( Rel F /\ A C_ dom F ) /\ ran ( F |` ( dom F \ A ) ) C_ ran ( F |` A ) ) -> ( y e. ran F -> y e. ran ( F |` A ) ) ) |
32 |
31
|
ssrdv |
|- ( ( ( Rel F /\ A C_ dom F ) /\ ran ( F |` ( dom F \ A ) ) C_ ran ( F |` A ) ) -> ran F C_ ran ( F |` A ) ) |
33 |
|
rnresss |
|- ran ( F |` A ) C_ ran F |
34 |
33
|
a1i |
|- ( ( ( Rel F /\ A C_ dom F ) /\ ran ( F |` ( dom F \ A ) ) C_ ran ( F |` A ) ) -> ran ( F |` A ) C_ ran F ) |
35 |
32 34
|
eqssd |
|- ( ( ( Rel F /\ A C_ dom F ) /\ ran ( F |` ( dom F \ A ) ) C_ ran ( F |` A ) ) -> ran F = ran ( F |` A ) ) |
36 |
35
|
ex |
|- ( ( Rel F /\ A C_ dom F ) -> ( ran ( F |` ( dom F \ A ) ) C_ ran ( F |` A ) -> ran F = ran ( F |` A ) ) ) |
37 |
2 36
|
biimtrid |
|- ( ( Rel F /\ A C_ dom F ) -> ( ( F " ( dom F \ A ) ) C_ ran ( F |` A ) -> ran F = ran ( F |` A ) ) ) |