Description: Deduction form of one negated side of imadisj . (Contributed by Stanislas Polu, 9-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | imadisjlnd.1 | |- ( ph -> ( dom A i^i B ) =/= (/) ) |
|
| Assertion | imadisjlnd | |- ( ph -> ( A " B ) =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imadisjlnd.1 | |- ( ph -> ( dom A i^i B ) =/= (/) ) |
|
| 2 | imadisj | |- ( ( A " B ) = (/) <-> ( dom A i^i B ) = (/) ) |
|
| 3 | 2 | biimpi | |- ( ( A " B ) = (/) -> ( dom A i^i B ) = (/) ) |
| 4 | 3 | necon3i | |- ( ( dom A i^i B ) =/= (/) -> ( A " B ) =/= (/) ) |
| 5 | 1 4 | syl | |- ( ph -> ( A " B ) =/= (/) ) |