| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ima |
|- ( F " A ) = ran ( F |` A ) |
| 2 |
|
resfunexg |
|- ( ( Fun F /\ A e. B ) -> ( F |` A ) e. _V ) |
| 3 |
2
|
dmexd |
|- ( ( Fun F /\ A e. B ) -> dom ( F |` A ) e. _V ) |
| 4 |
|
funres |
|- ( Fun F -> Fun ( F |` A ) ) |
| 5 |
|
funforn |
|- ( Fun ( F |` A ) <-> ( F |` A ) : dom ( F |` A ) -onto-> ran ( F |` A ) ) |
| 6 |
4 5
|
sylib |
|- ( Fun F -> ( F |` A ) : dom ( F |` A ) -onto-> ran ( F |` A ) ) |
| 7 |
6
|
adantr |
|- ( ( Fun F /\ A e. B ) -> ( F |` A ) : dom ( F |` A ) -onto-> ran ( F |` A ) ) |
| 8 |
|
fodomg |
|- ( dom ( F |` A ) e. _V -> ( ( F |` A ) : dom ( F |` A ) -onto-> ran ( F |` A ) -> ran ( F |` A ) ~<_ dom ( F |` A ) ) ) |
| 9 |
3 7 8
|
sylc |
|- ( ( Fun F /\ A e. B ) -> ran ( F |` A ) ~<_ dom ( F |` A ) ) |
| 10 |
1 9
|
eqbrtrid |
|- ( ( Fun F /\ A e. B ) -> ( F " A ) ~<_ dom ( F |` A ) ) |
| 11 |
10
|
expcom |
|- ( A e. B -> ( Fun F -> ( F " A ) ~<_ dom ( F |` A ) ) ) |
| 12 |
|
dmres |
|- dom ( F |` A ) = ( A i^i dom F ) |
| 13 |
|
inss1 |
|- ( A i^i dom F ) C_ A |
| 14 |
12 13
|
eqsstri |
|- dom ( F |` A ) C_ A |
| 15 |
|
ssdomg |
|- ( A e. B -> ( dom ( F |` A ) C_ A -> dom ( F |` A ) ~<_ A ) ) |
| 16 |
14 15
|
mpi |
|- ( A e. B -> dom ( F |` A ) ~<_ A ) |
| 17 |
|
domtr |
|- ( ( ( F " A ) ~<_ dom ( F |` A ) /\ dom ( F |` A ) ~<_ A ) -> ( F " A ) ~<_ A ) |
| 18 |
16 17
|
sylan2 |
|- ( ( ( F " A ) ~<_ dom ( F |` A ) /\ A e. B ) -> ( F " A ) ~<_ A ) |
| 19 |
18
|
expcom |
|- ( A e. B -> ( ( F " A ) ~<_ dom ( F |` A ) -> ( F " A ) ~<_ A ) ) |
| 20 |
11 19
|
syld |
|- ( A e. B -> ( Fun F -> ( F " A ) ~<_ A ) ) |