Step |
Hyp |
Ref |
Expression |
1 |
|
imadrhmcl.r |
|- R = ( N |`s ( F " S ) ) |
2 |
|
imadrhmcl.0 |
|- .0. = ( 0g ` N ) |
3 |
|
imadrhmcl.h |
|- ( ph -> F e. ( M RingHom N ) ) |
4 |
|
imadrhmcl.s |
|- ( ph -> S e. ( SubDRing ` M ) ) |
5 |
|
imadrhmcl.1 |
|- ( ph -> ran F =/= { .0. } ) |
6 |
|
sdrgsubrg |
|- ( S e. ( SubDRing ` M ) -> S e. ( SubRing ` M ) ) |
7 |
4 6
|
syl |
|- ( ph -> S e. ( SubRing ` M ) ) |
8 |
|
rhmima |
|- ( ( F e. ( M RingHom N ) /\ S e. ( SubRing ` M ) ) -> ( F " S ) e. ( SubRing ` N ) ) |
9 |
3 7 8
|
syl2anc |
|- ( ph -> ( F " S ) e. ( SubRing ` N ) ) |
10 |
1
|
subrgring |
|- ( ( F " S ) e. ( SubRing ` N ) -> R e. Ring ) |
11 |
9 10
|
syl |
|- ( ph -> R e. Ring ) |
12 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
13 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
14 |
12 13
|
unitss |
|- ( Unit ` R ) C_ ( Base ` R ) |
15 |
14
|
a1i |
|- ( ph -> ( Unit ` R ) C_ ( Base ` R ) ) |
16 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
17 |
|
eqid |
|- ( Base ` N ) = ( Base ` N ) |
18 |
16 17
|
rhmf |
|- ( F e. ( M RingHom N ) -> F : ( Base ` M ) --> ( Base ` N ) ) |
19 |
3 18
|
syl |
|- ( ph -> F : ( Base ` M ) --> ( Base ` N ) ) |
20 |
19
|
adantr |
|- ( ( ph /\ ( 1r ` R ) = ( 0g ` R ) ) -> F : ( Base ` M ) --> ( Base ` N ) ) |
21 |
|
rhmrcl2 |
|- ( F e. ( M RingHom N ) -> N e. Ring ) |
22 |
3 21
|
syl |
|- ( ph -> N e. Ring ) |
23 |
|
simpr |
|- ( ( ph /\ ( 1r ` R ) = ( 0g ` R ) ) -> ( 1r ` R ) = ( 0g ` R ) ) |
24 |
|
eqid |
|- ( 1r ` N ) = ( 1r ` N ) |
25 |
1 24
|
subrg1 |
|- ( ( F " S ) e. ( SubRing ` N ) -> ( 1r ` N ) = ( 1r ` R ) ) |
26 |
9 25
|
syl |
|- ( ph -> ( 1r ` N ) = ( 1r ` R ) ) |
27 |
26
|
adantr |
|- ( ( ph /\ ( 1r ` R ) = ( 0g ` R ) ) -> ( 1r ` N ) = ( 1r ` R ) ) |
28 |
1 2
|
subrg0 |
|- ( ( F " S ) e. ( SubRing ` N ) -> .0. = ( 0g ` R ) ) |
29 |
9 28
|
syl |
|- ( ph -> .0. = ( 0g ` R ) ) |
30 |
29
|
adantr |
|- ( ( ph /\ ( 1r ` R ) = ( 0g ` R ) ) -> .0. = ( 0g ` R ) ) |
31 |
23 27 30
|
3eqtr4rd |
|- ( ( ph /\ ( 1r ` R ) = ( 0g ` R ) ) -> .0. = ( 1r ` N ) ) |
32 |
17 2 24
|
01eq0ring |
|- ( ( N e. Ring /\ .0. = ( 1r ` N ) ) -> ( Base ` N ) = { .0. } ) |
33 |
22 31 32
|
syl2an2r |
|- ( ( ph /\ ( 1r ` R ) = ( 0g ` R ) ) -> ( Base ` N ) = { .0. } ) |
34 |
33
|
feq3d |
|- ( ( ph /\ ( 1r ` R ) = ( 0g ` R ) ) -> ( F : ( Base ` M ) --> ( Base ` N ) <-> F : ( Base ` M ) --> { .0. } ) ) |
35 |
20 34
|
mpbid |
|- ( ( ph /\ ( 1r ` R ) = ( 0g ` R ) ) -> F : ( Base ` M ) --> { .0. } ) |
36 |
2
|
fvexi |
|- .0. e. _V |
37 |
36
|
fconst2 |
|- ( F : ( Base ` M ) --> { .0. } <-> F = ( ( Base ` M ) X. { .0. } ) ) |
38 |
35 37
|
sylib |
|- ( ( ph /\ ( 1r ` R ) = ( 0g ` R ) ) -> F = ( ( Base ` M ) X. { .0. } ) ) |
39 |
19
|
ffnd |
|- ( ph -> F Fn ( Base ` M ) ) |
40 |
|
sdrgrcl |
|- ( S e. ( SubDRing ` M ) -> M e. DivRing ) |
41 |
4 40
|
syl |
|- ( ph -> M e. DivRing ) |
42 |
41
|
drngringd |
|- ( ph -> M e. Ring ) |
43 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
44 |
16 43
|
ring0cl |
|- ( M e. Ring -> ( 0g ` M ) e. ( Base ` M ) ) |
45 |
42 44
|
syl |
|- ( ph -> ( 0g ` M ) e. ( Base ` M ) ) |
46 |
45
|
ne0d |
|- ( ph -> ( Base ` M ) =/= (/) ) |
47 |
|
fconst5 |
|- ( ( F Fn ( Base ` M ) /\ ( Base ` M ) =/= (/) ) -> ( F = ( ( Base ` M ) X. { .0. } ) <-> ran F = { .0. } ) ) |
48 |
39 46 47
|
syl2anc |
|- ( ph -> ( F = ( ( Base ` M ) X. { .0. } ) <-> ran F = { .0. } ) ) |
49 |
48
|
adantr |
|- ( ( ph /\ ( 1r ` R ) = ( 0g ` R ) ) -> ( F = ( ( Base ` M ) X. { .0. } ) <-> ran F = { .0. } ) ) |
50 |
38 49
|
mpbid |
|- ( ( ph /\ ( 1r ` R ) = ( 0g ` R ) ) -> ran F = { .0. } ) |
51 |
5 50
|
mteqand |
|- ( ph -> ( 1r ` R ) =/= ( 0g ` R ) ) |
52 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
53 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
54 |
13 52 53
|
0unit |
|- ( R e. Ring -> ( ( 0g ` R ) e. ( Unit ` R ) <-> ( 1r ` R ) = ( 0g ` R ) ) ) |
55 |
11 54
|
syl |
|- ( ph -> ( ( 0g ` R ) e. ( Unit ` R ) <-> ( 1r ` R ) = ( 0g ` R ) ) ) |
56 |
55
|
necon3bbid |
|- ( ph -> ( -. ( 0g ` R ) e. ( Unit ` R ) <-> ( 1r ` R ) =/= ( 0g ` R ) ) ) |
57 |
51 56
|
mpbird |
|- ( ph -> -. ( 0g ` R ) e. ( Unit ` R ) ) |
58 |
|
ssdifsn |
|- ( ( Unit ` R ) C_ ( ( Base ` R ) \ { ( 0g ` R ) } ) <-> ( ( Unit ` R ) C_ ( Base ` R ) /\ -. ( 0g ` R ) e. ( Unit ` R ) ) ) |
59 |
15 57 58
|
sylanbrc |
|- ( ph -> ( Unit ` R ) C_ ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |
60 |
39
|
fnfund |
|- ( ph -> Fun F ) |
61 |
1
|
ressbasss2 |
|- ( Base ` R ) C_ ( F " S ) |
62 |
|
eldifi |
|- ( x e. ( ( Base ` R ) \ { ( 0g ` R ) } ) -> x e. ( Base ` R ) ) |
63 |
61 62
|
sselid |
|- ( x e. ( ( Base ` R ) \ { ( 0g ` R ) } ) -> x e. ( F " S ) ) |
64 |
|
fvelima |
|- ( ( Fun F /\ x e. ( F " S ) ) -> E. a e. S ( F ` a ) = x ) |
65 |
60 63 64
|
syl2an |
|- ( ( ph /\ x e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) -> E. a e. S ( F ` a ) = x ) |
66 |
|
simprr |
|- ( ( ( ph /\ x e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) -> ( F ` a ) = x ) |
67 |
|
simprl |
|- ( ( ( ph /\ x e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) -> a e. S ) |
68 |
67
|
fvresd |
|- ( ( ( ph /\ x e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) -> ( ( F |` S ) ` a ) = ( F ` a ) ) |
69 |
|
eqid |
|- ( M |`s S ) = ( M |`s S ) |
70 |
69
|
resrhm |
|- ( ( F e. ( M RingHom N ) /\ S e. ( SubRing ` M ) ) -> ( F |` S ) e. ( ( M |`s S ) RingHom N ) ) |
71 |
3 7 70
|
syl2anc |
|- ( ph -> ( F |` S ) e. ( ( M |`s S ) RingHom N ) ) |
72 |
|
df-ima |
|- ( F " S ) = ran ( F |` S ) |
73 |
|
eqimss2 |
|- ( ( F " S ) = ran ( F |` S ) -> ran ( F |` S ) C_ ( F " S ) ) |
74 |
72 73
|
mp1i |
|- ( ph -> ran ( F |` S ) C_ ( F " S ) ) |
75 |
1
|
resrhm2b |
|- ( ( ( F " S ) e. ( SubRing ` N ) /\ ran ( F |` S ) C_ ( F " S ) ) -> ( ( F |` S ) e. ( ( M |`s S ) RingHom N ) <-> ( F |` S ) e. ( ( M |`s S ) RingHom R ) ) ) |
76 |
9 74 75
|
syl2anc |
|- ( ph -> ( ( F |` S ) e. ( ( M |`s S ) RingHom N ) <-> ( F |` S ) e. ( ( M |`s S ) RingHom R ) ) ) |
77 |
71 76
|
mpbid |
|- ( ph -> ( F |` S ) e. ( ( M |`s S ) RingHom R ) ) |
78 |
77
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) -> ( F |` S ) e. ( ( M |`s S ) RingHom R ) ) |
79 |
|
eldifsni |
|- ( x e. ( ( Base ` R ) \ { ( 0g ` R ) } ) -> x =/= ( 0g ` R ) ) |
80 |
79
|
ad2antlr |
|- ( ( ( ph /\ x e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) -> x =/= ( 0g ` R ) ) |
81 |
68
|
adantr |
|- ( ( ( ( ph /\ x e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ a = ( 0g ` M ) ) -> ( ( F |` S ) ` a ) = ( F ` a ) ) |
82 |
|
simpr |
|- ( ( ( ( ph /\ x e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ a = ( 0g ` M ) ) -> a = ( 0g ` M ) ) |
83 |
82
|
fveq2d |
|- ( ( ( ( ph /\ x e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ a = ( 0g ` M ) ) -> ( ( F |` S ) ` a ) = ( ( F |` S ) ` ( 0g ` M ) ) ) |
84 |
69 43
|
subrg0 |
|- ( S e. ( SubRing ` M ) -> ( 0g ` M ) = ( 0g ` ( M |`s S ) ) ) |
85 |
7 84
|
syl |
|- ( ph -> ( 0g ` M ) = ( 0g ` ( M |`s S ) ) ) |
86 |
85
|
fveq2d |
|- ( ph -> ( ( F |` S ) ` ( 0g ` M ) ) = ( ( F |` S ) ` ( 0g ` ( M |`s S ) ) ) ) |
87 |
|
rhmghm |
|- ( ( F |` S ) e. ( ( M |`s S ) RingHom R ) -> ( F |` S ) e. ( ( M |`s S ) GrpHom R ) ) |
88 |
|
eqid |
|- ( 0g ` ( M |`s S ) ) = ( 0g ` ( M |`s S ) ) |
89 |
88 52
|
ghmid |
|- ( ( F |` S ) e. ( ( M |`s S ) GrpHom R ) -> ( ( F |` S ) ` ( 0g ` ( M |`s S ) ) ) = ( 0g ` R ) ) |
90 |
77 87 89
|
3syl |
|- ( ph -> ( ( F |` S ) ` ( 0g ` ( M |`s S ) ) ) = ( 0g ` R ) ) |
91 |
86 90
|
eqtrd |
|- ( ph -> ( ( F |` S ) ` ( 0g ` M ) ) = ( 0g ` R ) ) |
92 |
91
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ a = ( 0g ` M ) ) -> ( ( F |` S ) ` ( 0g ` M ) ) = ( 0g ` R ) ) |
93 |
83 92
|
eqtrd |
|- ( ( ( ( ph /\ x e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ a = ( 0g ` M ) ) -> ( ( F |` S ) ` a ) = ( 0g ` R ) ) |
94 |
|
simplrr |
|- ( ( ( ( ph /\ x e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ a = ( 0g ` M ) ) -> ( F ` a ) = x ) |
95 |
81 93 94
|
3eqtr3rd |
|- ( ( ( ( ph /\ x e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ a = ( 0g ` M ) ) -> x = ( 0g ` R ) ) |
96 |
80 95
|
mteqand |
|- ( ( ( ph /\ x e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) -> a =/= ( 0g ` M ) ) |
97 |
4
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) -> S e. ( SubDRing ` M ) ) |
98 |
|
eqid |
|- ( Unit ` ( M |`s S ) ) = ( Unit ` ( M |`s S ) ) |
99 |
69 43 98
|
sdrgunit |
|- ( S e. ( SubDRing ` M ) -> ( a e. ( Unit ` ( M |`s S ) ) <-> ( a e. S /\ a =/= ( 0g ` M ) ) ) ) |
100 |
97 99
|
syl |
|- ( ( ( ph /\ x e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) -> ( a e. ( Unit ` ( M |`s S ) ) <-> ( a e. S /\ a =/= ( 0g ` M ) ) ) ) |
101 |
67 96 100
|
mpbir2and |
|- ( ( ( ph /\ x e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) -> a e. ( Unit ` ( M |`s S ) ) ) |
102 |
|
elrhmunit |
|- ( ( ( F |` S ) e. ( ( M |`s S ) RingHom R ) /\ a e. ( Unit ` ( M |`s S ) ) ) -> ( ( F |` S ) ` a ) e. ( Unit ` R ) ) |
103 |
78 101 102
|
syl2anc |
|- ( ( ( ph /\ x e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) -> ( ( F |` S ) ` a ) e. ( Unit ` R ) ) |
104 |
68 103
|
eqeltrrd |
|- ( ( ( ph /\ x e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) -> ( F ` a ) e. ( Unit ` R ) ) |
105 |
66 104
|
eqeltrrd |
|- ( ( ( ph /\ x e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) -> x e. ( Unit ` R ) ) |
106 |
65 105
|
rexlimddv |
|- ( ( ph /\ x e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) -> x e. ( Unit ` R ) ) |
107 |
59 106
|
eqelssd |
|- ( ph -> ( Unit ` R ) = ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |
108 |
12 13 52
|
isdrng |
|- ( R e. DivRing <-> ( R e. Ring /\ ( Unit ` R ) = ( ( Base ` R ) \ { ( 0g ` R ) } ) ) ) |
109 |
11 107 108
|
sylanbrc |
|- ( ph -> R e. DivRing ) |