Step |
Hyp |
Ref |
Expression |
1 |
|
imaelfm.l |
|- L = ( Y filGen B ) |
2 |
|
fimass |
|- ( F : Y --> X -> ( F " S ) C_ X ) |
3 |
2
|
3ad2ant3 |
|- ( ( X e. A /\ B e. ( fBas ` Y ) /\ F : Y --> X ) -> ( F " S ) C_ X ) |
4 |
|
ssid |
|- ( F " S ) C_ ( F " S ) |
5 |
|
imaeq2 |
|- ( x = S -> ( F " x ) = ( F " S ) ) |
6 |
5
|
sseq1d |
|- ( x = S -> ( ( F " x ) C_ ( F " S ) <-> ( F " S ) C_ ( F " S ) ) ) |
7 |
6
|
rspcev |
|- ( ( S e. L /\ ( F " S ) C_ ( F " S ) ) -> E. x e. L ( F " x ) C_ ( F " S ) ) |
8 |
4 7
|
mpan2 |
|- ( S e. L -> E. x e. L ( F " x ) C_ ( F " S ) ) |
9 |
3 8
|
anim12i |
|- ( ( ( X e. A /\ B e. ( fBas ` Y ) /\ F : Y --> X ) /\ S e. L ) -> ( ( F " S ) C_ X /\ E. x e. L ( F " x ) C_ ( F " S ) ) ) |
10 |
1
|
elfm2 |
|- ( ( X e. A /\ B e. ( fBas ` Y ) /\ F : Y --> X ) -> ( ( F " S ) e. ( ( X FilMap F ) ` B ) <-> ( ( F " S ) C_ X /\ E. x e. L ( F " x ) C_ ( F " S ) ) ) ) |
11 |
10
|
adantr |
|- ( ( ( X e. A /\ B e. ( fBas ` Y ) /\ F : Y --> X ) /\ S e. L ) -> ( ( F " S ) e. ( ( X FilMap F ) ` B ) <-> ( ( F " S ) C_ X /\ E. x e. L ( F " x ) C_ ( F " S ) ) ) ) |
12 |
9 11
|
mpbird |
|- ( ( ( X e. A /\ B e. ( fBas ` Y ) /\ F : Y --> X ) /\ S e. L ) -> ( F " S ) e. ( ( X FilMap F ) ` B ) ) |