| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imaelfm.l |  |-  L = ( Y filGen B ) | 
						
							| 2 |  | fimass |  |-  ( F : Y --> X -> ( F " S ) C_ X ) | 
						
							| 3 | 2 | 3ad2ant3 |  |-  ( ( X e. A /\ B e. ( fBas ` Y ) /\ F : Y --> X ) -> ( F " S ) C_ X ) | 
						
							| 4 |  | ssid |  |-  ( F " S ) C_ ( F " S ) | 
						
							| 5 |  | imaeq2 |  |-  ( x = S -> ( F " x ) = ( F " S ) ) | 
						
							| 6 | 5 | sseq1d |  |-  ( x = S -> ( ( F " x ) C_ ( F " S ) <-> ( F " S ) C_ ( F " S ) ) ) | 
						
							| 7 | 6 | rspcev |  |-  ( ( S e. L /\ ( F " S ) C_ ( F " S ) ) -> E. x e. L ( F " x ) C_ ( F " S ) ) | 
						
							| 8 | 4 7 | mpan2 |  |-  ( S e. L -> E. x e. L ( F " x ) C_ ( F " S ) ) | 
						
							| 9 | 3 8 | anim12i |  |-  ( ( ( X e. A /\ B e. ( fBas ` Y ) /\ F : Y --> X ) /\ S e. L ) -> ( ( F " S ) C_ X /\ E. x e. L ( F " x ) C_ ( F " S ) ) ) | 
						
							| 10 | 1 | elfm2 |  |-  ( ( X e. A /\ B e. ( fBas ` Y ) /\ F : Y --> X ) -> ( ( F " S ) e. ( ( X FilMap F ) ` B ) <-> ( ( F " S ) C_ X /\ E. x e. L ( F " x ) C_ ( F " S ) ) ) ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ( X e. A /\ B e. ( fBas ` Y ) /\ F : Y --> X ) /\ S e. L ) -> ( ( F " S ) e. ( ( X FilMap F ) ` B ) <-> ( ( F " S ) C_ X /\ E. x e. L ( F " x ) C_ ( F " S ) ) ) ) | 
						
							| 12 | 9 11 | mpbird |  |-  ( ( ( X e. A /\ B e. ( fBas ` Y ) /\ F : Y --> X ) /\ S e. L ) -> ( F " S ) e. ( ( X FilMap F ) ` B ) ) |