| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imassrn |
|- ( A " B ) C_ ran A |
| 2 |
|
rnexg |
|- ( A e. V -> ran A e. _V ) |
| 3 |
|
ssexg |
|- ( ( ( A " B ) C_ ran A /\ ran A e. _V ) -> ( A " B ) e. _V ) |
| 4 |
1 2 3
|
sylancr |
|- ( A e. V -> ( A " B ) e. _V ) |
| 5 |
|
qsexg |
|- ( B e. X -> ( B /. A ) e. _V ) |
| 6 |
|
uniexg |
|- ( ( B /. A ) e. _V -> U. ( B /. A ) e. _V ) |
| 7 |
5 6
|
syl |
|- ( B e. X -> U. ( B /. A ) e. _V ) |
| 8 |
|
uniqsALTV |
|- ( ( A |` B ) e. W -> U. ( B /. A ) = ( A " B ) ) |
| 9 |
8
|
eleq1d |
|- ( ( A |` B ) e. W -> ( U. ( B /. A ) e. _V <-> ( A " B ) e. _V ) ) |
| 10 |
7 9
|
imbitrid |
|- ( ( A |` B ) e. W -> ( B e. X -> ( A " B ) e. _V ) ) |
| 11 |
10
|
imp |
|- ( ( ( A |` B ) e. W /\ B e. X ) -> ( A " B ) e. _V ) |
| 12 |
4 11
|
jaoi |
|- ( ( A e. V \/ ( ( A |` B ) e. W /\ B e. X ) ) -> ( A " B ) e. _V ) |