Description: The image of a set is a set. Deduction version of imaexg . (Contributed by Thierry Arnoux, 14-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rnexd.1 | |- ( ph -> A e. V ) |
|
Assertion | imaexd | |- ( ph -> ( A " B ) e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnexd.1 | |- ( ph -> A e. V ) |
|
2 | imaexg | |- ( A e. V -> ( A " B ) e. _V ) |
|
3 | 1 2 | syl | |- ( ph -> ( A " B ) e. _V ) |