Description: The image of a set is a set. Theorem 3.17 of Monk1 p. 39. (Contributed by NM, 24-Jul-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imaexg | |- ( A e. V -> ( A " B ) e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn | |- ( A " B ) C_ ran A |
|
| 2 | rnexg | |- ( A e. V -> ran A e. _V ) |
|
| 3 | ssexg | |- ( ( ( A " B ) C_ ran A /\ ran A e. _V ) -> ( A " B ) e. _V ) |
|
| 4 | 1 2 3 | sylancr | |- ( A e. V -> ( A " B ) e. _V ) |