Metamath Proof Explorer


Theorem imaexi

Description: The image of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Proof shortened by SN, 27-Apr-2025)

Ref Expression
Hypothesis imaexi.1
|- A e. V
Assertion imaexi
|- ( A " B ) e. _V

Proof

Step Hyp Ref Expression
1 imaexi.1
 |-  A e. V
2 1 elexi
 |-  A e. _V
3 2 imaex
 |-  ( A " B ) e. _V