Step |
Hyp |
Ref |
Expression |
1 |
|
imaeq2 |
|- ( x = (/) -> ( F " x ) = ( F " (/) ) ) |
2 |
1
|
eleq1d |
|- ( x = (/) -> ( ( F " x ) e. Fin <-> ( F " (/) ) e. Fin ) ) |
3 |
2
|
imbi2d |
|- ( x = (/) -> ( ( Fun F -> ( F " x ) e. Fin ) <-> ( Fun F -> ( F " (/) ) e. Fin ) ) ) |
4 |
|
imaeq2 |
|- ( x = y -> ( F " x ) = ( F " y ) ) |
5 |
4
|
eleq1d |
|- ( x = y -> ( ( F " x ) e. Fin <-> ( F " y ) e. Fin ) ) |
6 |
5
|
imbi2d |
|- ( x = y -> ( ( Fun F -> ( F " x ) e. Fin ) <-> ( Fun F -> ( F " y ) e. Fin ) ) ) |
7 |
|
imaeq2 |
|- ( x = ( y u. { z } ) -> ( F " x ) = ( F " ( y u. { z } ) ) ) |
8 |
7
|
eleq1d |
|- ( x = ( y u. { z } ) -> ( ( F " x ) e. Fin <-> ( F " ( y u. { z } ) ) e. Fin ) ) |
9 |
8
|
imbi2d |
|- ( x = ( y u. { z } ) -> ( ( Fun F -> ( F " x ) e. Fin ) <-> ( Fun F -> ( F " ( y u. { z } ) ) e. Fin ) ) ) |
10 |
|
imaeq2 |
|- ( x = X -> ( F " x ) = ( F " X ) ) |
11 |
10
|
eleq1d |
|- ( x = X -> ( ( F " x ) e. Fin <-> ( F " X ) e. Fin ) ) |
12 |
11
|
imbi2d |
|- ( x = X -> ( ( Fun F -> ( F " x ) e. Fin ) <-> ( Fun F -> ( F " X ) e. Fin ) ) ) |
13 |
|
ima0 |
|- ( F " (/) ) = (/) |
14 |
|
0fin |
|- (/) e. Fin |
15 |
13 14
|
eqeltri |
|- ( F " (/) ) e. Fin |
16 |
15
|
a1i |
|- ( Fun F -> ( F " (/) ) e. Fin ) |
17 |
|
funfn |
|- ( Fun F <-> F Fn dom F ) |
18 |
|
fnsnfv |
|- ( ( F Fn dom F /\ z e. dom F ) -> { ( F ` z ) } = ( F " { z } ) ) |
19 |
17 18
|
sylanb |
|- ( ( Fun F /\ z e. dom F ) -> { ( F ` z ) } = ( F " { z } ) ) |
20 |
|
snfi |
|- { ( F ` z ) } e. Fin |
21 |
19 20
|
eqeltrrdi |
|- ( ( Fun F /\ z e. dom F ) -> ( F " { z } ) e. Fin ) |
22 |
|
ndmima |
|- ( -. z e. dom F -> ( F " { z } ) = (/) ) |
23 |
22 14
|
eqeltrdi |
|- ( -. z e. dom F -> ( F " { z } ) e. Fin ) |
24 |
23
|
adantl |
|- ( ( Fun F /\ -. z e. dom F ) -> ( F " { z } ) e. Fin ) |
25 |
21 24
|
pm2.61dan |
|- ( Fun F -> ( F " { z } ) e. Fin ) |
26 |
|
imaundi |
|- ( F " ( y u. { z } ) ) = ( ( F " y ) u. ( F " { z } ) ) |
27 |
|
unfi |
|- ( ( ( F " y ) e. Fin /\ ( F " { z } ) e. Fin ) -> ( ( F " y ) u. ( F " { z } ) ) e. Fin ) |
28 |
26 27
|
eqeltrid |
|- ( ( ( F " y ) e. Fin /\ ( F " { z } ) e. Fin ) -> ( F " ( y u. { z } ) ) e. Fin ) |
29 |
25 28
|
sylan2 |
|- ( ( ( F " y ) e. Fin /\ Fun F ) -> ( F " ( y u. { z } ) ) e. Fin ) |
30 |
29
|
expcom |
|- ( Fun F -> ( ( F " y ) e. Fin -> ( F " ( y u. { z } ) ) e. Fin ) ) |
31 |
30
|
a2i |
|- ( ( Fun F -> ( F " y ) e. Fin ) -> ( Fun F -> ( F " ( y u. { z } ) ) e. Fin ) ) |
32 |
31
|
a1i |
|- ( y e. Fin -> ( ( Fun F -> ( F " y ) e. Fin ) -> ( Fun F -> ( F " ( y u. { z } ) ) e. Fin ) ) ) |
33 |
3 6 9 12 16 32
|
findcard2 |
|- ( X e. Fin -> ( Fun F -> ( F " X ) e. Fin ) ) |
34 |
33
|
impcom |
|- ( ( Fun F /\ X e. Fin ) -> ( F " X ) e. Fin ) |