| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imadmres |
|- ( F " dom ( F |` X ) ) = ( F " X ) |
| 2 |
|
simpr |
|- ( ( Fun F /\ X e. Fin ) -> X e. Fin ) |
| 3 |
|
dmres |
|- dom ( F |` X ) = ( X i^i dom F ) |
| 4 |
|
inss1 |
|- ( X i^i dom F ) C_ X |
| 5 |
3 4
|
eqsstri |
|- dom ( F |` X ) C_ X |
| 6 |
|
ssfi |
|- ( ( X e. Fin /\ dom ( F |` X ) C_ X ) -> dom ( F |` X ) e. Fin ) |
| 7 |
2 5 6
|
sylancl |
|- ( ( Fun F /\ X e. Fin ) -> dom ( F |` X ) e. Fin ) |
| 8 |
|
resss |
|- ( F |` X ) C_ F |
| 9 |
|
dmss |
|- ( ( F |` X ) C_ F -> dom ( F |` X ) C_ dom F ) |
| 10 |
8 9
|
mp1i |
|- ( ( Fun F /\ X e. Fin ) -> dom ( F |` X ) C_ dom F ) |
| 11 |
|
fores |
|- ( ( Fun F /\ dom ( F |` X ) C_ dom F ) -> ( F |` dom ( F |` X ) ) : dom ( F |` X ) -onto-> ( F " dom ( F |` X ) ) ) |
| 12 |
10 11
|
syldan |
|- ( ( Fun F /\ X e. Fin ) -> ( F |` dom ( F |` X ) ) : dom ( F |` X ) -onto-> ( F " dom ( F |` X ) ) ) |
| 13 |
|
fofi |
|- ( ( dom ( F |` X ) e. Fin /\ ( F |` dom ( F |` X ) ) : dom ( F |` X ) -onto-> ( F " dom ( F |` X ) ) ) -> ( F " dom ( F |` X ) ) e. Fin ) |
| 14 |
7 12 13
|
syl2anc |
|- ( ( Fun F /\ X e. Fin ) -> ( F " dom ( F |` X ) ) e. Fin ) |
| 15 |
1 14
|
eqeltrrid |
|- ( ( Fun F /\ X e. Fin ) -> ( F " X ) e. Fin ) |