Step |
Hyp |
Ref |
Expression |
1 |
|
imadmres |
|- ( F " dom ( F |` X ) ) = ( F " X ) |
2 |
|
simpr |
|- ( ( Fun F /\ X e. Fin ) -> X e. Fin ) |
3 |
|
dmres |
|- dom ( F |` X ) = ( X i^i dom F ) |
4 |
|
inss1 |
|- ( X i^i dom F ) C_ X |
5 |
3 4
|
eqsstri |
|- dom ( F |` X ) C_ X |
6 |
|
ssfi |
|- ( ( X e. Fin /\ dom ( F |` X ) C_ X ) -> dom ( F |` X ) e. Fin ) |
7 |
2 5 6
|
sylancl |
|- ( ( Fun F /\ X e. Fin ) -> dom ( F |` X ) e. Fin ) |
8 |
|
resss |
|- ( F |` X ) C_ F |
9 |
|
dmss |
|- ( ( F |` X ) C_ F -> dom ( F |` X ) C_ dom F ) |
10 |
8 9
|
mp1i |
|- ( ( Fun F /\ X e. Fin ) -> dom ( F |` X ) C_ dom F ) |
11 |
|
fores |
|- ( ( Fun F /\ dom ( F |` X ) C_ dom F ) -> ( F |` dom ( F |` X ) ) : dom ( F |` X ) -onto-> ( F " dom ( F |` X ) ) ) |
12 |
10 11
|
syldan |
|- ( ( Fun F /\ X e. Fin ) -> ( F |` dom ( F |` X ) ) : dom ( F |` X ) -onto-> ( F " dom ( F |` X ) ) ) |
13 |
|
fofi |
|- ( ( dom ( F |` X ) e. Fin /\ ( F |` dom ( F |` X ) ) : dom ( F |` X ) -onto-> ( F " dom ( F |` X ) ) ) -> ( F " dom ( F |` X ) ) e. Fin ) |
14 |
7 12 13
|
syl2anc |
|- ( ( Fun F /\ X e. Fin ) -> ( F " dom ( F |` X ) ) e. Fin ) |
15 |
1 14
|
eqeltrrid |
|- ( ( Fun F /\ X e. Fin ) -> ( F " X ) e. Fin ) |