| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-res |  |-  ( ( G i^i ( A X. B ) ) |` Y ) = ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) | 
						
							| 2 | 1 | rneqi |  |-  ran ( ( G i^i ( A X. B ) ) |` Y ) = ran ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) | 
						
							| 3 |  | df-ima |  |-  ( ( G i^i ( A X. B ) ) " Y ) = ran ( ( G i^i ( A X. B ) ) |` Y ) | 
						
							| 4 |  | df-ima |  |-  ( G " ( Y i^i A ) ) = ran ( G |` ( Y i^i A ) ) | 
						
							| 5 |  | df-res |  |-  ( G |` ( Y i^i A ) ) = ( G i^i ( ( Y i^i A ) X. _V ) ) | 
						
							| 6 | 5 | rneqi |  |-  ran ( G |` ( Y i^i A ) ) = ran ( G i^i ( ( Y i^i A ) X. _V ) ) | 
						
							| 7 | 4 6 | eqtri |  |-  ( G " ( Y i^i A ) ) = ran ( G i^i ( ( Y i^i A ) X. _V ) ) | 
						
							| 8 | 7 | ineq1i |  |-  ( ( G " ( Y i^i A ) ) i^i B ) = ( ran ( G i^i ( ( Y i^i A ) X. _V ) ) i^i B ) | 
						
							| 9 |  | cnvin |  |-  `' ( ( G i^i ( ( Y i^i A ) X. _V ) ) i^i ( _V X. B ) ) = ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) i^i `' ( _V X. B ) ) | 
						
							| 10 |  | inxp |  |-  ( ( A X. _V ) i^i ( _V X. B ) ) = ( ( A i^i _V ) X. ( _V i^i B ) ) | 
						
							| 11 |  | inv1 |  |-  ( A i^i _V ) = A | 
						
							| 12 |  | incom |  |-  ( _V i^i B ) = ( B i^i _V ) | 
						
							| 13 |  | inv1 |  |-  ( B i^i _V ) = B | 
						
							| 14 | 12 13 | eqtri |  |-  ( _V i^i B ) = B | 
						
							| 15 | 11 14 | xpeq12i |  |-  ( ( A i^i _V ) X. ( _V i^i B ) ) = ( A X. B ) | 
						
							| 16 | 10 15 | eqtr2i |  |-  ( A X. B ) = ( ( A X. _V ) i^i ( _V X. B ) ) | 
						
							| 17 | 16 | ineq2i |  |-  ( ( G i^i ( Y X. _V ) ) i^i ( A X. B ) ) = ( ( G i^i ( Y X. _V ) ) i^i ( ( A X. _V ) i^i ( _V X. B ) ) ) | 
						
							| 18 |  | in32 |  |-  ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) = ( ( G i^i ( Y X. _V ) ) i^i ( A X. B ) ) | 
						
							| 19 |  | xpindir |  |-  ( ( Y i^i A ) X. _V ) = ( ( Y X. _V ) i^i ( A X. _V ) ) | 
						
							| 20 | 19 | ineq2i |  |-  ( G i^i ( ( Y i^i A ) X. _V ) ) = ( G i^i ( ( Y X. _V ) i^i ( A X. _V ) ) ) | 
						
							| 21 |  | inass |  |-  ( ( G i^i ( Y X. _V ) ) i^i ( A X. _V ) ) = ( G i^i ( ( Y X. _V ) i^i ( A X. _V ) ) ) | 
						
							| 22 | 20 21 | eqtr4i |  |-  ( G i^i ( ( Y i^i A ) X. _V ) ) = ( ( G i^i ( Y X. _V ) ) i^i ( A X. _V ) ) | 
						
							| 23 | 22 | ineq1i |  |-  ( ( G i^i ( ( Y i^i A ) X. _V ) ) i^i ( _V X. B ) ) = ( ( ( G i^i ( Y X. _V ) ) i^i ( A X. _V ) ) i^i ( _V X. B ) ) | 
						
							| 24 |  | inass |  |-  ( ( ( G i^i ( Y X. _V ) ) i^i ( A X. _V ) ) i^i ( _V X. B ) ) = ( ( G i^i ( Y X. _V ) ) i^i ( ( A X. _V ) i^i ( _V X. B ) ) ) | 
						
							| 25 | 23 24 | eqtri |  |-  ( ( G i^i ( ( Y i^i A ) X. _V ) ) i^i ( _V X. B ) ) = ( ( G i^i ( Y X. _V ) ) i^i ( ( A X. _V ) i^i ( _V X. B ) ) ) | 
						
							| 26 | 17 18 25 | 3eqtr4i |  |-  ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) = ( ( G i^i ( ( Y i^i A ) X. _V ) ) i^i ( _V X. B ) ) | 
						
							| 27 | 26 | cnveqi |  |-  `' ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) = `' ( ( G i^i ( ( Y i^i A ) X. _V ) ) i^i ( _V X. B ) ) | 
						
							| 28 |  | df-res |  |-  ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) |` B ) = ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) i^i ( B X. _V ) ) | 
						
							| 29 |  | cnvxp |  |-  `' ( _V X. B ) = ( B X. _V ) | 
						
							| 30 | 29 | ineq2i |  |-  ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) i^i `' ( _V X. B ) ) = ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) i^i ( B X. _V ) ) | 
						
							| 31 | 28 30 | eqtr4i |  |-  ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) |` B ) = ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) i^i `' ( _V X. B ) ) | 
						
							| 32 | 9 27 31 | 3eqtr4ri |  |-  ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) |` B ) = `' ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) | 
						
							| 33 | 32 | dmeqi |  |-  dom ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) |` B ) = dom `' ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) | 
						
							| 34 |  | incom |  |-  ( B i^i dom `' ( G i^i ( ( Y i^i A ) X. _V ) ) ) = ( dom `' ( G i^i ( ( Y i^i A ) X. _V ) ) i^i B ) | 
						
							| 35 |  | dmres |  |-  dom ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) |` B ) = ( B i^i dom `' ( G i^i ( ( Y i^i A ) X. _V ) ) ) | 
						
							| 36 |  | df-rn |  |-  ran ( G i^i ( ( Y i^i A ) X. _V ) ) = dom `' ( G i^i ( ( Y i^i A ) X. _V ) ) | 
						
							| 37 | 36 | ineq1i |  |-  ( ran ( G i^i ( ( Y i^i A ) X. _V ) ) i^i B ) = ( dom `' ( G i^i ( ( Y i^i A ) X. _V ) ) i^i B ) | 
						
							| 38 | 34 35 37 | 3eqtr4ri |  |-  ( ran ( G i^i ( ( Y i^i A ) X. _V ) ) i^i B ) = dom ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) |` B ) | 
						
							| 39 |  | df-rn |  |-  ran ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) = dom `' ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) | 
						
							| 40 | 33 38 39 | 3eqtr4ri |  |-  ran ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) = ( ran ( G i^i ( ( Y i^i A ) X. _V ) ) i^i B ) | 
						
							| 41 | 8 40 | eqtr4i |  |-  ( ( G " ( Y i^i A ) ) i^i B ) = ran ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) | 
						
							| 42 | 2 3 41 | 3eqtr4i |  |-  ( ( G i^i ( A X. B ) ) " Y ) = ( ( G " ( Y i^i A ) ) i^i B ) |