Step |
Hyp |
Ref |
Expression |
1 |
|
df-res |
|- ( ( G i^i ( A X. B ) ) |` Y ) = ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) |
2 |
1
|
rneqi |
|- ran ( ( G i^i ( A X. B ) ) |` Y ) = ran ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) |
3 |
|
df-ima |
|- ( ( G i^i ( A X. B ) ) " Y ) = ran ( ( G i^i ( A X. B ) ) |` Y ) |
4 |
|
df-ima |
|- ( G " ( Y i^i A ) ) = ran ( G |` ( Y i^i A ) ) |
5 |
|
df-res |
|- ( G |` ( Y i^i A ) ) = ( G i^i ( ( Y i^i A ) X. _V ) ) |
6 |
5
|
rneqi |
|- ran ( G |` ( Y i^i A ) ) = ran ( G i^i ( ( Y i^i A ) X. _V ) ) |
7 |
4 6
|
eqtri |
|- ( G " ( Y i^i A ) ) = ran ( G i^i ( ( Y i^i A ) X. _V ) ) |
8 |
7
|
ineq1i |
|- ( ( G " ( Y i^i A ) ) i^i B ) = ( ran ( G i^i ( ( Y i^i A ) X. _V ) ) i^i B ) |
9 |
|
cnvin |
|- `' ( ( G i^i ( ( Y i^i A ) X. _V ) ) i^i ( _V X. B ) ) = ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) i^i `' ( _V X. B ) ) |
10 |
|
inxp |
|- ( ( A X. _V ) i^i ( _V X. B ) ) = ( ( A i^i _V ) X. ( _V i^i B ) ) |
11 |
|
inv1 |
|- ( A i^i _V ) = A |
12 |
|
incom |
|- ( _V i^i B ) = ( B i^i _V ) |
13 |
|
inv1 |
|- ( B i^i _V ) = B |
14 |
12 13
|
eqtri |
|- ( _V i^i B ) = B |
15 |
11 14
|
xpeq12i |
|- ( ( A i^i _V ) X. ( _V i^i B ) ) = ( A X. B ) |
16 |
10 15
|
eqtr2i |
|- ( A X. B ) = ( ( A X. _V ) i^i ( _V X. B ) ) |
17 |
16
|
ineq2i |
|- ( ( G i^i ( Y X. _V ) ) i^i ( A X. B ) ) = ( ( G i^i ( Y X. _V ) ) i^i ( ( A X. _V ) i^i ( _V X. B ) ) ) |
18 |
|
in32 |
|- ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) = ( ( G i^i ( Y X. _V ) ) i^i ( A X. B ) ) |
19 |
|
xpindir |
|- ( ( Y i^i A ) X. _V ) = ( ( Y X. _V ) i^i ( A X. _V ) ) |
20 |
19
|
ineq2i |
|- ( G i^i ( ( Y i^i A ) X. _V ) ) = ( G i^i ( ( Y X. _V ) i^i ( A X. _V ) ) ) |
21 |
|
inass |
|- ( ( G i^i ( Y X. _V ) ) i^i ( A X. _V ) ) = ( G i^i ( ( Y X. _V ) i^i ( A X. _V ) ) ) |
22 |
20 21
|
eqtr4i |
|- ( G i^i ( ( Y i^i A ) X. _V ) ) = ( ( G i^i ( Y X. _V ) ) i^i ( A X. _V ) ) |
23 |
22
|
ineq1i |
|- ( ( G i^i ( ( Y i^i A ) X. _V ) ) i^i ( _V X. B ) ) = ( ( ( G i^i ( Y X. _V ) ) i^i ( A X. _V ) ) i^i ( _V X. B ) ) |
24 |
|
inass |
|- ( ( ( G i^i ( Y X. _V ) ) i^i ( A X. _V ) ) i^i ( _V X. B ) ) = ( ( G i^i ( Y X. _V ) ) i^i ( ( A X. _V ) i^i ( _V X. B ) ) ) |
25 |
23 24
|
eqtri |
|- ( ( G i^i ( ( Y i^i A ) X. _V ) ) i^i ( _V X. B ) ) = ( ( G i^i ( Y X. _V ) ) i^i ( ( A X. _V ) i^i ( _V X. B ) ) ) |
26 |
17 18 25
|
3eqtr4i |
|- ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) = ( ( G i^i ( ( Y i^i A ) X. _V ) ) i^i ( _V X. B ) ) |
27 |
26
|
cnveqi |
|- `' ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) = `' ( ( G i^i ( ( Y i^i A ) X. _V ) ) i^i ( _V X. B ) ) |
28 |
|
df-res |
|- ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) |` B ) = ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) i^i ( B X. _V ) ) |
29 |
|
cnvxp |
|- `' ( _V X. B ) = ( B X. _V ) |
30 |
29
|
ineq2i |
|- ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) i^i `' ( _V X. B ) ) = ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) i^i ( B X. _V ) ) |
31 |
28 30
|
eqtr4i |
|- ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) |` B ) = ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) i^i `' ( _V X. B ) ) |
32 |
9 27 31
|
3eqtr4ri |
|- ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) |` B ) = `' ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) |
33 |
32
|
dmeqi |
|- dom ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) |` B ) = dom `' ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) |
34 |
|
incom |
|- ( B i^i dom `' ( G i^i ( ( Y i^i A ) X. _V ) ) ) = ( dom `' ( G i^i ( ( Y i^i A ) X. _V ) ) i^i B ) |
35 |
|
dmres |
|- dom ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) |` B ) = ( B i^i dom `' ( G i^i ( ( Y i^i A ) X. _V ) ) ) |
36 |
|
df-rn |
|- ran ( G i^i ( ( Y i^i A ) X. _V ) ) = dom `' ( G i^i ( ( Y i^i A ) X. _V ) ) |
37 |
36
|
ineq1i |
|- ( ran ( G i^i ( ( Y i^i A ) X. _V ) ) i^i B ) = ( dom `' ( G i^i ( ( Y i^i A ) X. _V ) ) i^i B ) |
38 |
34 35 37
|
3eqtr4ri |
|- ( ran ( G i^i ( ( Y i^i A ) X. _V ) ) i^i B ) = dom ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) |` B ) |
39 |
|
df-rn |
|- ran ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) = dom `' ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) |
40 |
33 38 39
|
3eqtr4ri |
|- ran ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) = ( ran ( G i^i ( ( Y i^i A ) X. _V ) ) i^i B ) |
41 |
8 40
|
eqtr4i |
|- ( ( G " ( Y i^i A ) ) i^i B ) = ran ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) |
42 |
2 3 41
|
3eqtr4i |
|- ( ( G i^i ( A X. B ) ) " Y ) = ( ( G " ( Y i^i A ) ) i^i B ) |