Description: The image structure's group operation is closed in the base set. (Contributed by Mario Carneiro, 23-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | imasaddf.f | |- ( ph -> F : V -onto-> B ) |
|
imasaddf.e | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .x. b ) ) = ( F ` ( p .x. q ) ) ) ) |
||
imasaddf.u | |- ( ph -> U = ( F "s R ) ) |
||
imasaddf.v | |- ( ph -> V = ( Base ` R ) ) |
||
imasaddf.r | |- ( ph -> R e. Z ) |
||
imasaddf.p | |- .x. = ( +g ` R ) |
||
imasaddf.a | |- .xb = ( +g ` U ) |
||
imasaddf.c | |- ( ( ph /\ ( p e. V /\ q e. V ) ) -> ( p .x. q ) e. V ) |
||
Assertion | imasaddf | |- ( ph -> .xb : ( B X. B ) --> B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasaddf.f | |- ( ph -> F : V -onto-> B ) |
|
2 | imasaddf.e | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .x. b ) ) = ( F ` ( p .x. q ) ) ) ) |
|
3 | imasaddf.u | |- ( ph -> U = ( F "s R ) ) |
|
4 | imasaddf.v | |- ( ph -> V = ( Base ` R ) ) |
|
5 | imasaddf.r | |- ( ph -> R e. Z ) |
|
6 | imasaddf.p | |- .x. = ( +g ` R ) |
|
7 | imasaddf.a | |- .xb = ( +g ` U ) |
|
8 | imasaddf.c | |- ( ( ph /\ ( p e. V /\ q e. V ) ) -> ( p .x. q ) e. V ) |
|
9 | 3 4 1 5 6 7 | imasplusg | |- ( ph -> .xb = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } ) |
10 | 1 2 9 8 | imasaddflem | |- ( ph -> .xb : ( B X. B ) --> B ) |