| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imasdsf1o.u |  |-  ( ph -> U = ( F "s R ) ) | 
						
							| 2 |  | imasdsf1o.v |  |-  ( ph -> V = ( Base ` R ) ) | 
						
							| 3 |  | imasdsf1o.f |  |-  ( ph -> F : V -1-1-onto-> B ) | 
						
							| 4 |  | imasdsf1o.r |  |-  ( ph -> R e. Z ) | 
						
							| 5 |  | imasdsf1o.e |  |-  E = ( ( dist ` R ) |` ( V X. V ) ) | 
						
							| 6 |  | imasdsf1o.d |  |-  D = ( dist ` U ) | 
						
							| 7 |  | imasdsf1o.m |  |-  ( ph -> E e. ( *Met ` V ) ) | 
						
							| 8 |  | imasdsf1o.x |  |-  ( ph -> X e. V ) | 
						
							| 9 |  | imasdsf1o.y |  |-  ( ph -> Y e. V ) | 
						
							| 10 |  | eqid |  |-  ( RR*s |`s ( RR* \ { -oo } ) ) = ( RR*s |`s ( RR* \ { -oo } ) ) | 
						
							| 11 |  | eqid |  |-  { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( h ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } = { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( h ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } | 
						
							| 12 |  | eqid |  |-  U_ n e. NN ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( h ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) = U_ n e. NN ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( h ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) | 
						
							| 13 | 1 2 3 4 5 6 7 8 9 10 11 12 | imasdsf1olem |  |-  ( ph -> ( ( F ` X ) D ( F ` Y ) ) = ( X E Y ) ) |