Step |
Hyp |
Ref |
Expression |
1 |
|
imasdsf1o.u |
|- ( ph -> U = ( F "s R ) ) |
2 |
|
imasdsf1o.v |
|- ( ph -> V = ( Base ` R ) ) |
3 |
|
imasdsf1o.f |
|- ( ph -> F : V -1-1-onto-> B ) |
4 |
|
imasdsf1o.r |
|- ( ph -> R e. Z ) |
5 |
|
imasdsf1o.e |
|- E = ( ( dist ` R ) |` ( V X. V ) ) |
6 |
|
imasdsf1o.d |
|- D = ( dist ` U ) |
7 |
|
imasdsf1o.m |
|- ( ph -> E e. ( *Met ` V ) ) |
8 |
|
imasdsf1o.x |
|- ( ph -> X e. V ) |
9 |
|
imasdsf1o.y |
|- ( ph -> Y e. V ) |
10 |
|
imasdsf1o.w |
|- W = ( RR*s |`s ( RR* \ { -oo } ) ) |
11 |
|
imasdsf1o.s |
|- S = { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( h ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |
12 |
|
imasdsf1o.t |
|- T = U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) |
13 |
|
f1ofo |
|- ( F : V -1-1-onto-> B -> F : V -onto-> B ) |
14 |
3 13
|
syl |
|- ( ph -> F : V -onto-> B ) |
15 |
|
eqid |
|- ( dist ` R ) = ( dist ` R ) |
16 |
|
f1of |
|- ( F : V -1-1-onto-> B -> F : V --> B ) |
17 |
3 16
|
syl |
|- ( ph -> F : V --> B ) |
18 |
17 8
|
ffvelrnd |
|- ( ph -> ( F ` X ) e. B ) |
19 |
17 9
|
ffvelrnd |
|- ( ph -> ( F ` Y ) e. B ) |
20 |
1 2 14 4 15 6 18 19 11 5
|
imasdsval2 |
|- ( ph -> ( ( F ` X ) D ( F ` Y ) ) = inf ( U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) ) |
21 |
12
|
infeq1i |
|- inf ( T , RR* , < ) = inf ( U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) |
22 |
20 21
|
eqtr4di |
|- ( ph -> ( ( F ` X ) D ( F ` Y ) ) = inf ( T , RR* , < ) ) |
23 |
|
xrsbas |
|- RR* = ( Base ` RR*s ) |
24 |
|
xrsadd |
|- +e = ( +g ` RR*s ) |
25 |
|
xrsex |
|- RR*s e. _V |
26 |
25
|
a1i |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> RR*s e. _V ) |
27 |
|
fzfid |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( 1 ... n ) e. Fin ) |
28 |
|
difss |
|- ( RR* \ { -oo } ) C_ RR* |
29 |
28
|
a1i |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( RR* \ { -oo } ) C_ RR* ) |
30 |
|
xmetf |
|- ( E e. ( *Met ` V ) -> E : ( V X. V ) --> RR* ) |
31 |
|
ffn |
|- ( E : ( V X. V ) --> RR* -> E Fn ( V X. V ) ) |
32 |
7 30 31
|
3syl |
|- ( ph -> E Fn ( V X. V ) ) |
33 |
|
xmetcl |
|- ( ( E e. ( *Met ` V ) /\ f e. V /\ g e. V ) -> ( f E g ) e. RR* ) |
34 |
|
xmetge0 |
|- ( ( E e. ( *Met ` V ) /\ f e. V /\ g e. V ) -> 0 <_ ( f E g ) ) |
35 |
|
ge0nemnf |
|- ( ( ( f E g ) e. RR* /\ 0 <_ ( f E g ) ) -> ( f E g ) =/= -oo ) |
36 |
33 34 35
|
syl2anc |
|- ( ( E e. ( *Met ` V ) /\ f e. V /\ g e. V ) -> ( f E g ) =/= -oo ) |
37 |
|
eldifsn |
|- ( ( f E g ) e. ( RR* \ { -oo } ) <-> ( ( f E g ) e. RR* /\ ( f E g ) =/= -oo ) ) |
38 |
33 36 37
|
sylanbrc |
|- ( ( E e. ( *Met ` V ) /\ f e. V /\ g e. V ) -> ( f E g ) e. ( RR* \ { -oo } ) ) |
39 |
38
|
3expb |
|- ( ( E e. ( *Met ` V ) /\ ( f e. V /\ g e. V ) ) -> ( f E g ) e. ( RR* \ { -oo } ) ) |
40 |
7 39
|
sylan |
|- ( ( ph /\ ( f e. V /\ g e. V ) ) -> ( f E g ) e. ( RR* \ { -oo } ) ) |
41 |
40
|
ralrimivva |
|- ( ph -> A. f e. V A. g e. V ( f E g ) e. ( RR* \ { -oo } ) ) |
42 |
|
ffnov |
|- ( E : ( V X. V ) --> ( RR* \ { -oo } ) <-> ( E Fn ( V X. V ) /\ A. f e. V A. g e. V ( f E g ) e. ( RR* \ { -oo } ) ) ) |
43 |
32 41 42
|
sylanbrc |
|- ( ph -> E : ( V X. V ) --> ( RR* \ { -oo } ) ) |
44 |
43
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> E : ( V X. V ) --> ( RR* \ { -oo } ) ) |
45 |
11
|
ssrab3 |
|- S C_ ( ( V X. V ) ^m ( 1 ... n ) ) |
46 |
45
|
a1i |
|- ( ( ph /\ n e. NN ) -> S C_ ( ( V X. V ) ^m ( 1 ... n ) ) ) |
47 |
46
|
sselda |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> g e. ( ( V X. V ) ^m ( 1 ... n ) ) ) |
48 |
|
elmapi |
|- ( g e. ( ( V X. V ) ^m ( 1 ... n ) ) -> g : ( 1 ... n ) --> ( V X. V ) ) |
49 |
47 48
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> g : ( 1 ... n ) --> ( V X. V ) ) |
50 |
|
fco |
|- ( ( E : ( V X. V ) --> ( RR* \ { -oo } ) /\ g : ( 1 ... n ) --> ( V X. V ) ) -> ( E o. g ) : ( 1 ... n ) --> ( RR* \ { -oo } ) ) |
51 |
44 49 50
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( E o. g ) : ( 1 ... n ) --> ( RR* \ { -oo } ) ) |
52 |
|
0re |
|- 0 e. RR |
53 |
|
rexr |
|- ( 0 e. RR -> 0 e. RR* ) |
54 |
|
renemnf |
|- ( 0 e. RR -> 0 =/= -oo ) |
55 |
|
eldifsn |
|- ( 0 e. ( RR* \ { -oo } ) <-> ( 0 e. RR* /\ 0 =/= -oo ) ) |
56 |
53 54 55
|
sylanbrc |
|- ( 0 e. RR -> 0 e. ( RR* \ { -oo } ) ) |
57 |
52 56
|
mp1i |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> 0 e. ( RR* \ { -oo } ) ) |
58 |
|
xaddid2 |
|- ( x e. RR* -> ( 0 +e x ) = x ) |
59 |
|
xaddid1 |
|- ( x e. RR* -> ( x +e 0 ) = x ) |
60 |
58 59
|
jca |
|- ( x e. RR* -> ( ( 0 +e x ) = x /\ ( x +e 0 ) = x ) ) |
61 |
60
|
adantl |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ x e. RR* ) -> ( ( 0 +e x ) = x /\ ( x +e 0 ) = x ) ) |
62 |
23 24 10 26 27 29 51 57 61
|
gsumress |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( RR*s gsum ( E o. g ) ) = ( W gsum ( E o. g ) ) ) |
63 |
10 23
|
ressbas2 |
|- ( ( RR* \ { -oo } ) C_ RR* -> ( RR* \ { -oo } ) = ( Base ` W ) ) |
64 |
28 63
|
ax-mp |
|- ( RR* \ { -oo } ) = ( Base ` W ) |
65 |
10
|
xrs10 |
|- 0 = ( 0g ` W ) |
66 |
10
|
xrs1cmn |
|- W e. CMnd |
67 |
66
|
a1i |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> W e. CMnd ) |
68 |
|
c0ex |
|- 0 e. _V |
69 |
68
|
a1i |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> 0 e. _V ) |
70 |
51 27 69
|
fdmfifsupp |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( E o. g ) finSupp 0 ) |
71 |
64 65 67 27 51 70
|
gsumcl |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( W gsum ( E o. g ) ) e. ( RR* \ { -oo } ) ) |
72 |
62 71
|
eqeltrd |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( RR*s gsum ( E o. g ) ) e. ( RR* \ { -oo } ) ) |
73 |
72
|
eldifad |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( RR*s gsum ( E o. g ) ) e. RR* ) |
74 |
73
|
fmpttd |
|- ( ( ph /\ n e. NN ) -> ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) : S --> RR* ) |
75 |
74
|
frnd |
|- ( ( ph /\ n e. NN ) -> ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) C_ RR* ) |
76 |
75
|
ralrimiva |
|- ( ph -> A. n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) C_ RR* ) |
77 |
|
iunss |
|- ( U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) C_ RR* <-> A. n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) C_ RR* ) |
78 |
76 77
|
sylibr |
|- ( ph -> U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) C_ RR* ) |
79 |
12 78
|
eqsstrid |
|- ( ph -> T C_ RR* ) |
80 |
|
infxrcl |
|- ( T C_ RR* -> inf ( T , RR* , < ) e. RR* ) |
81 |
79 80
|
syl |
|- ( ph -> inf ( T , RR* , < ) e. RR* ) |
82 |
|
xmetcl |
|- ( ( E e. ( *Met ` V ) /\ X e. V /\ Y e. V ) -> ( X E Y ) e. RR* ) |
83 |
7 8 9 82
|
syl3anc |
|- ( ph -> ( X E Y ) e. RR* ) |
84 |
|
1nn |
|- 1 e. NN |
85 |
|
1ex |
|- 1 e. _V |
86 |
|
opex |
|- <. X , Y >. e. _V |
87 |
85 86
|
f1osn |
|- { <. 1 , <. X , Y >. >. } : { 1 } -1-1-onto-> { <. X , Y >. } |
88 |
|
f1of |
|- ( { <. 1 , <. X , Y >. >. } : { 1 } -1-1-onto-> { <. X , Y >. } -> { <. 1 , <. X , Y >. >. } : { 1 } --> { <. X , Y >. } ) |
89 |
87 88
|
ax-mp |
|- { <. 1 , <. X , Y >. >. } : { 1 } --> { <. X , Y >. } |
90 |
8 9
|
opelxpd |
|- ( ph -> <. X , Y >. e. ( V X. V ) ) |
91 |
90
|
snssd |
|- ( ph -> { <. X , Y >. } C_ ( V X. V ) ) |
92 |
|
fss |
|- ( ( { <. 1 , <. X , Y >. >. } : { 1 } --> { <. X , Y >. } /\ { <. X , Y >. } C_ ( V X. V ) ) -> { <. 1 , <. X , Y >. >. } : { 1 } --> ( V X. V ) ) |
93 |
89 91 92
|
sylancr |
|- ( ph -> { <. 1 , <. X , Y >. >. } : { 1 } --> ( V X. V ) ) |
94 |
7
|
elfvexd |
|- ( ph -> V e. _V ) |
95 |
94 94
|
xpexd |
|- ( ph -> ( V X. V ) e. _V ) |
96 |
|
snex |
|- { 1 } e. _V |
97 |
|
elmapg |
|- ( ( ( V X. V ) e. _V /\ { 1 } e. _V ) -> ( { <. 1 , <. X , Y >. >. } e. ( ( V X. V ) ^m { 1 } ) <-> { <. 1 , <. X , Y >. >. } : { 1 } --> ( V X. V ) ) ) |
98 |
95 96 97
|
sylancl |
|- ( ph -> ( { <. 1 , <. X , Y >. >. } e. ( ( V X. V ) ^m { 1 } ) <-> { <. 1 , <. X , Y >. >. } : { 1 } --> ( V X. V ) ) ) |
99 |
93 98
|
mpbird |
|- ( ph -> { <. 1 , <. X , Y >. >. } e. ( ( V X. V ) ^m { 1 } ) ) |
100 |
|
op1stg |
|- ( ( X e. V /\ Y e. V ) -> ( 1st ` <. X , Y >. ) = X ) |
101 |
8 9 100
|
syl2anc |
|- ( ph -> ( 1st ` <. X , Y >. ) = X ) |
102 |
101
|
fveq2d |
|- ( ph -> ( F ` ( 1st ` <. X , Y >. ) ) = ( F ` X ) ) |
103 |
|
op2ndg |
|- ( ( X e. V /\ Y e. V ) -> ( 2nd ` <. X , Y >. ) = Y ) |
104 |
8 9 103
|
syl2anc |
|- ( ph -> ( 2nd ` <. X , Y >. ) = Y ) |
105 |
104
|
fveq2d |
|- ( ph -> ( F ` ( 2nd ` <. X , Y >. ) ) = ( F ` Y ) ) |
106 |
102 105
|
jca |
|- ( ph -> ( ( F ` ( 1st ` <. X , Y >. ) ) = ( F ` X ) /\ ( F ` ( 2nd ` <. X , Y >. ) ) = ( F ` Y ) ) ) |
107 |
25
|
a1i |
|- ( ph -> RR*s e. _V ) |
108 |
|
snfi |
|- { 1 } e. Fin |
109 |
108
|
a1i |
|- ( ph -> { 1 } e. Fin ) |
110 |
28
|
a1i |
|- ( ph -> ( RR* \ { -oo } ) C_ RR* ) |
111 |
|
xmetge0 |
|- ( ( E e. ( *Met ` V ) /\ X e. V /\ Y e. V ) -> 0 <_ ( X E Y ) ) |
112 |
7 8 9 111
|
syl3anc |
|- ( ph -> 0 <_ ( X E Y ) ) |
113 |
|
ge0nemnf |
|- ( ( ( X E Y ) e. RR* /\ 0 <_ ( X E Y ) ) -> ( X E Y ) =/= -oo ) |
114 |
83 112 113
|
syl2anc |
|- ( ph -> ( X E Y ) =/= -oo ) |
115 |
|
eldifsn |
|- ( ( X E Y ) e. ( RR* \ { -oo } ) <-> ( ( X E Y ) e. RR* /\ ( X E Y ) =/= -oo ) ) |
116 |
83 114 115
|
sylanbrc |
|- ( ph -> ( X E Y ) e. ( RR* \ { -oo } ) ) |
117 |
|
fconst6g |
|- ( ( X E Y ) e. ( RR* \ { -oo } ) -> ( { 1 } X. { ( X E Y ) } ) : { 1 } --> ( RR* \ { -oo } ) ) |
118 |
116 117
|
syl |
|- ( ph -> ( { 1 } X. { ( X E Y ) } ) : { 1 } --> ( RR* \ { -oo } ) ) |
119 |
|
fcoconst |
|- ( ( E Fn ( V X. V ) /\ <. X , Y >. e. ( V X. V ) ) -> ( E o. ( { 1 } X. { <. X , Y >. } ) ) = ( { 1 } X. { ( E ` <. X , Y >. ) } ) ) |
120 |
32 90 119
|
syl2anc |
|- ( ph -> ( E o. ( { 1 } X. { <. X , Y >. } ) ) = ( { 1 } X. { ( E ` <. X , Y >. ) } ) ) |
121 |
85 86
|
xpsn |
|- ( { 1 } X. { <. X , Y >. } ) = { <. 1 , <. X , Y >. >. } |
122 |
121
|
coeq2i |
|- ( E o. ( { 1 } X. { <. X , Y >. } ) ) = ( E o. { <. 1 , <. X , Y >. >. } ) |
123 |
|
df-ov |
|- ( X E Y ) = ( E ` <. X , Y >. ) |
124 |
123
|
eqcomi |
|- ( E ` <. X , Y >. ) = ( X E Y ) |
125 |
124
|
sneqi |
|- { ( E ` <. X , Y >. ) } = { ( X E Y ) } |
126 |
125
|
xpeq2i |
|- ( { 1 } X. { ( E ` <. X , Y >. ) } ) = ( { 1 } X. { ( X E Y ) } ) |
127 |
120 122 126
|
3eqtr3g |
|- ( ph -> ( E o. { <. 1 , <. X , Y >. >. } ) = ( { 1 } X. { ( X E Y ) } ) ) |
128 |
127
|
feq1d |
|- ( ph -> ( ( E o. { <. 1 , <. X , Y >. >. } ) : { 1 } --> ( RR* \ { -oo } ) <-> ( { 1 } X. { ( X E Y ) } ) : { 1 } --> ( RR* \ { -oo } ) ) ) |
129 |
118 128
|
mpbird |
|- ( ph -> ( E o. { <. 1 , <. X , Y >. >. } ) : { 1 } --> ( RR* \ { -oo } ) ) |
130 |
52 56
|
mp1i |
|- ( ph -> 0 e. ( RR* \ { -oo } ) ) |
131 |
60
|
adantl |
|- ( ( ph /\ x e. RR* ) -> ( ( 0 +e x ) = x /\ ( x +e 0 ) = x ) ) |
132 |
23 24 10 107 109 110 129 130 131
|
gsumress |
|- ( ph -> ( RR*s gsum ( E o. { <. 1 , <. X , Y >. >. } ) ) = ( W gsum ( E o. { <. 1 , <. X , Y >. >. } ) ) ) |
133 |
|
fconstmpt |
|- ( { 1 } X. { ( X E Y ) } ) = ( j e. { 1 } |-> ( X E Y ) ) |
134 |
127 133
|
eqtrdi |
|- ( ph -> ( E o. { <. 1 , <. X , Y >. >. } ) = ( j e. { 1 } |-> ( X E Y ) ) ) |
135 |
134
|
oveq2d |
|- ( ph -> ( W gsum ( E o. { <. 1 , <. X , Y >. >. } ) ) = ( W gsum ( j e. { 1 } |-> ( X E Y ) ) ) ) |
136 |
|
cmnmnd |
|- ( W e. CMnd -> W e. Mnd ) |
137 |
66 136
|
mp1i |
|- ( ph -> W e. Mnd ) |
138 |
84
|
a1i |
|- ( ph -> 1 e. NN ) |
139 |
|
eqidd |
|- ( j = 1 -> ( X E Y ) = ( X E Y ) ) |
140 |
64 139
|
gsumsn |
|- ( ( W e. Mnd /\ 1 e. NN /\ ( X E Y ) e. ( RR* \ { -oo } ) ) -> ( W gsum ( j e. { 1 } |-> ( X E Y ) ) ) = ( X E Y ) ) |
141 |
137 138 116 140
|
syl3anc |
|- ( ph -> ( W gsum ( j e. { 1 } |-> ( X E Y ) ) ) = ( X E Y ) ) |
142 |
132 135 141
|
3eqtrrd |
|- ( ph -> ( X E Y ) = ( RR*s gsum ( E o. { <. 1 , <. X , Y >. >. } ) ) ) |
143 |
|
fveq1 |
|- ( g = { <. 1 , <. X , Y >. >. } -> ( g ` 1 ) = ( { <. 1 , <. X , Y >. >. } ` 1 ) ) |
144 |
85 86
|
fvsn |
|- ( { <. 1 , <. X , Y >. >. } ` 1 ) = <. X , Y >. |
145 |
143 144
|
eqtrdi |
|- ( g = { <. 1 , <. X , Y >. >. } -> ( g ` 1 ) = <. X , Y >. ) |
146 |
145
|
fveq2d |
|- ( g = { <. 1 , <. X , Y >. >. } -> ( 1st ` ( g ` 1 ) ) = ( 1st ` <. X , Y >. ) ) |
147 |
146
|
fveqeq2d |
|- ( g = { <. 1 , <. X , Y >. >. } -> ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) <-> ( F ` ( 1st ` <. X , Y >. ) ) = ( F ` X ) ) ) |
148 |
145
|
fveq2d |
|- ( g = { <. 1 , <. X , Y >. >. } -> ( 2nd ` ( g ` 1 ) ) = ( 2nd ` <. X , Y >. ) ) |
149 |
148
|
fveqeq2d |
|- ( g = { <. 1 , <. X , Y >. >. } -> ( ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) <-> ( F ` ( 2nd ` <. X , Y >. ) ) = ( F ` Y ) ) ) |
150 |
147 149
|
anbi12d |
|- ( g = { <. 1 , <. X , Y >. >. } -> ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) <-> ( ( F ` ( 1st ` <. X , Y >. ) ) = ( F ` X ) /\ ( F ` ( 2nd ` <. X , Y >. ) ) = ( F ` Y ) ) ) ) |
151 |
|
coeq2 |
|- ( g = { <. 1 , <. X , Y >. >. } -> ( E o. g ) = ( E o. { <. 1 , <. X , Y >. >. } ) ) |
152 |
151
|
oveq2d |
|- ( g = { <. 1 , <. X , Y >. >. } -> ( RR*s gsum ( E o. g ) ) = ( RR*s gsum ( E o. { <. 1 , <. X , Y >. >. } ) ) ) |
153 |
152
|
eqeq2d |
|- ( g = { <. 1 , <. X , Y >. >. } -> ( ( X E Y ) = ( RR*s gsum ( E o. g ) ) <-> ( X E Y ) = ( RR*s gsum ( E o. { <. 1 , <. X , Y >. >. } ) ) ) ) |
154 |
150 153
|
anbi12d |
|- ( g = { <. 1 , <. X , Y >. >. } -> ( ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) <-> ( ( ( F ` ( 1st ` <. X , Y >. ) ) = ( F ` X ) /\ ( F ` ( 2nd ` <. X , Y >. ) ) = ( F ` Y ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. { <. 1 , <. X , Y >. >. } ) ) ) ) ) |
155 |
154
|
rspcev |
|- ( ( { <. 1 , <. X , Y >. >. } e. ( ( V X. V ) ^m { 1 } ) /\ ( ( ( F ` ( 1st ` <. X , Y >. ) ) = ( F ` X ) /\ ( F ` ( 2nd ` <. X , Y >. ) ) = ( F ` Y ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. { <. 1 , <. X , Y >. >. } ) ) ) ) -> E. g e. ( ( V X. V ) ^m { 1 } ) ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) ) |
156 |
99 106 142 155
|
syl12anc |
|- ( ph -> E. g e. ( ( V X. V ) ^m { 1 } ) ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) ) |
157 |
|
ovex |
|- ( X E Y ) e. _V |
158 |
|
eqid |
|- ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) = ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) |
159 |
158
|
elrnmpt |
|- ( ( X E Y ) e. _V -> ( ( X E Y ) e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) <-> E. g e. S ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) ) |
160 |
157 159
|
ax-mp |
|- ( ( X E Y ) e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) <-> E. g e. S ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) |
161 |
11
|
rexeqi |
|- ( E. g e. S ( X E Y ) = ( RR*s gsum ( E o. g ) ) <-> E. g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( h ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) |
162 |
|
fveq1 |
|- ( h = g -> ( h ` 1 ) = ( g ` 1 ) ) |
163 |
162
|
fveq2d |
|- ( h = g -> ( 1st ` ( h ` 1 ) ) = ( 1st ` ( g ` 1 ) ) ) |
164 |
163
|
fveqeq2d |
|- ( h = g -> ( ( F ` ( 1st ` ( h ` 1 ) ) ) = ( F ` X ) <-> ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) ) ) |
165 |
|
fveq1 |
|- ( h = g -> ( h ` n ) = ( g ` n ) ) |
166 |
165
|
fveq2d |
|- ( h = g -> ( 2nd ` ( h ` n ) ) = ( 2nd ` ( g ` n ) ) ) |
167 |
166
|
fveqeq2d |
|- ( h = g -> ( ( F ` ( 2nd ` ( h ` n ) ) ) = ( F ` Y ) <-> ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) ) ) |
168 |
|
fveq1 |
|- ( h = g -> ( h ` i ) = ( g ` i ) ) |
169 |
168
|
fveq2d |
|- ( h = g -> ( 2nd ` ( h ` i ) ) = ( 2nd ` ( g ` i ) ) ) |
170 |
169
|
fveq2d |
|- ( h = g -> ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 2nd ` ( g ` i ) ) ) ) |
171 |
|
fveq1 |
|- ( h = g -> ( h ` ( i + 1 ) ) = ( g ` ( i + 1 ) ) ) |
172 |
171
|
fveq2d |
|- ( h = g -> ( 1st ` ( h ` ( i + 1 ) ) ) = ( 1st ` ( g ` ( i + 1 ) ) ) ) |
173 |
172
|
fveq2d |
|- ( h = g -> ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) |
174 |
170 173
|
eqeq12d |
|- ( h = g -> ( ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) <-> ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) ) |
175 |
174
|
ralbidv |
|- ( h = g -> ( A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) <-> A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) ) |
176 |
164 167 175
|
3anbi123d |
|- ( h = g -> ( ( ( F ` ( 1st ` ( h ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( h ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) <-> ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) ) ) |
177 |
176
|
rexrab |
|- ( E. g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( h ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } ( X E Y ) = ( RR*s gsum ( E o. g ) ) <-> E. g e. ( ( V X. V ) ^m ( 1 ... n ) ) ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) ) |
178 |
161 177
|
bitri |
|- ( E. g e. S ( X E Y ) = ( RR*s gsum ( E o. g ) ) <-> E. g e. ( ( V X. V ) ^m ( 1 ... n ) ) ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) ) |
179 |
|
oveq2 |
|- ( n = 1 -> ( 1 ... n ) = ( 1 ... 1 ) ) |
180 |
|
1z |
|- 1 e. ZZ |
181 |
|
fzsn |
|- ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) |
182 |
180 181
|
ax-mp |
|- ( 1 ... 1 ) = { 1 } |
183 |
179 182
|
eqtrdi |
|- ( n = 1 -> ( 1 ... n ) = { 1 } ) |
184 |
183
|
oveq2d |
|- ( n = 1 -> ( ( V X. V ) ^m ( 1 ... n ) ) = ( ( V X. V ) ^m { 1 } ) ) |
185 |
|
df-3an |
|- ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) <-> ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) ) |
186 |
|
ral0 |
|- A. i e. (/) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) |
187 |
|
oveq1 |
|- ( n = 1 -> ( n - 1 ) = ( 1 - 1 ) ) |
188 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
189 |
187 188
|
eqtrdi |
|- ( n = 1 -> ( n - 1 ) = 0 ) |
190 |
189
|
oveq2d |
|- ( n = 1 -> ( 1 ... ( n - 1 ) ) = ( 1 ... 0 ) ) |
191 |
|
fz10 |
|- ( 1 ... 0 ) = (/) |
192 |
190 191
|
eqtrdi |
|- ( n = 1 -> ( 1 ... ( n - 1 ) ) = (/) ) |
193 |
192
|
raleqdv |
|- ( n = 1 -> ( A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) <-> A. i e. (/) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) ) |
194 |
186 193
|
mpbiri |
|- ( n = 1 -> A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) |
195 |
194
|
biantrud |
|- ( n = 1 -> ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) ) <-> ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) ) ) |
196 |
|
2fveq3 |
|- ( n = 1 -> ( 2nd ` ( g ` n ) ) = ( 2nd ` ( g ` 1 ) ) ) |
197 |
196
|
fveqeq2d |
|- ( n = 1 -> ( ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) <-> ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) ) |
198 |
197
|
anbi2d |
|- ( n = 1 -> ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) ) <-> ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) ) ) |
199 |
195 198
|
bitr3d |
|- ( n = 1 -> ( ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) <-> ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) ) ) |
200 |
185 199
|
syl5bb |
|- ( n = 1 -> ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) <-> ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) ) ) |
201 |
200
|
anbi1d |
|- ( n = 1 -> ( ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) <-> ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) ) ) |
202 |
184 201
|
rexeqbidv |
|- ( n = 1 -> ( E. g e. ( ( V X. V ) ^m ( 1 ... n ) ) ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) <-> E. g e. ( ( V X. V ) ^m { 1 } ) ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) ) ) |
203 |
178 202
|
syl5bb |
|- ( n = 1 -> ( E. g e. S ( X E Y ) = ( RR*s gsum ( E o. g ) ) <-> E. g e. ( ( V X. V ) ^m { 1 } ) ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) ) ) |
204 |
160 203
|
syl5bb |
|- ( n = 1 -> ( ( X E Y ) e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) <-> E. g e. ( ( V X. V ) ^m { 1 } ) ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) ) ) |
205 |
204
|
rspcev |
|- ( ( 1 e. NN /\ E. g e. ( ( V X. V ) ^m { 1 } ) ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) ) -> E. n e. NN ( X E Y ) e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) ) |
206 |
84 156 205
|
sylancr |
|- ( ph -> E. n e. NN ( X E Y ) e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) ) |
207 |
|
eliun |
|- ( ( X E Y ) e. U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) <-> E. n e. NN ( X E Y ) e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) ) |
208 |
206 207
|
sylibr |
|- ( ph -> ( X E Y ) e. U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) ) |
209 |
208 12
|
eleqtrrdi |
|- ( ph -> ( X E Y ) e. T ) |
210 |
|
infxrlb |
|- ( ( T C_ RR* /\ ( X E Y ) e. T ) -> inf ( T , RR* , < ) <_ ( X E Y ) ) |
211 |
79 209 210
|
syl2anc |
|- ( ph -> inf ( T , RR* , < ) <_ ( X E Y ) ) |
212 |
12
|
eleq2i |
|- ( p e. T <-> p e. U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) ) |
213 |
|
eliun |
|- ( p e. U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) <-> E. n e. NN p e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) ) |
214 |
212 213
|
bitri |
|- ( p e. T <-> E. n e. NN p e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) ) |
215 |
158
|
elrnmpt |
|- ( p e. _V -> ( p e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) <-> E. g e. S p = ( RR*s gsum ( E o. g ) ) ) ) |
216 |
215
|
elv |
|- ( p e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) <-> E. g e. S p = ( RR*s gsum ( E o. g ) ) ) |
217 |
176 11
|
elrab2 |
|- ( g e. S <-> ( g e. ( ( V X. V ) ^m ( 1 ... n ) ) /\ ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) ) ) |
218 |
217
|
simprbi |
|- ( g e. S -> ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) ) |
219 |
218
|
adantl |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) ) |
220 |
219
|
simp2d |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) ) |
221 |
3
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> F : V -1-1-onto-> B ) |
222 |
|
f1of1 |
|- ( F : V -1-1-onto-> B -> F : V -1-1-> B ) |
223 |
221 222
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> F : V -1-1-> B ) |
224 |
|
simplr |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> n e. NN ) |
225 |
|
elfz1end |
|- ( n e. NN <-> n e. ( 1 ... n ) ) |
226 |
224 225
|
sylib |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> n e. ( 1 ... n ) ) |
227 |
49 226
|
ffvelrnd |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( g ` n ) e. ( V X. V ) ) |
228 |
|
xp2nd |
|- ( ( g ` n ) e. ( V X. V ) -> ( 2nd ` ( g ` n ) ) e. V ) |
229 |
227 228
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( 2nd ` ( g ` n ) ) e. V ) |
230 |
9
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> Y e. V ) |
231 |
|
f1fveq |
|- ( ( F : V -1-1-> B /\ ( ( 2nd ` ( g ` n ) ) e. V /\ Y e. V ) ) -> ( ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) <-> ( 2nd ` ( g ` n ) ) = Y ) ) |
232 |
223 229 230 231
|
syl12anc |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) <-> ( 2nd ` ( g ` n ) ) = Y ) ) |
233 |
220 232
|
mpbid |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( 2nd ` ( g ` n ) ) = Y ) |
234 |
233
|
oveq2d |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( X E ( 2nd ` ( g ` n ) ) ) = ( X E Y ) ) |
235 |
|
eleq1 |
|- ( m = 1 -> ( m e. ( 1 ... n ) <-> 1 e. ( 1 ... n ) ) ) |
236 |
|
2fveq3 |
|- ( m = 1 -> ( 2nd ` ( g ` m ) ) = ( 2nd ` ( g ` 1 ) ) ) |
237 |
236
|
oveq2d |
|- ( m = 1 -> ( X E ( 2nd ` ( g ` m ) ) ) = ( X E ( 2nd ` ( g ` 1 ) ) ) ) |
238 |
|
oveq2 |
|- ( m = 1 -> ( 1 ... m ) = ( 1 ... 1 ) ) |
239 |
238 182
|
eqtrdi |
|- ( m = 1 -> ( 1 ... m ) = { 1 } ) |
240 |
239
|
reseq2d |
|- ( m = 1 -> ( ( E o. g ) |` ( 1 ... m ) ) = ( ( E o. g ) |` { 1 } ) ) |
241 |
240
|
oveq2d |
|- ( m = 1 -> ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) = ( W gsum ( ( E o. g ) |` { 1 } ) ) ) |
242 |
237 241
|
breq12d |
|- ( m = 1 -> ( ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) <-> ( X E ( 2nd ` ( g ` 1 ) ) ) <_ ( W gsum ( ( E o. g ) |` { 1 } ) ) ) ) |
243 |
235 242
|
imbi12d |
|- ( m = 1 -> ( ( m e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) ) <-> ( 1 e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` 1 ) ) ) <_ ( W gsum ( ( E o. g ) |` { 1 } ) ) ) ) ) |
244 |
243
|
imbi2d |
|- ( m = 1 -> ( ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( m e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) ) ) <-> ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( 1 e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` 1 ) ) ) <_ ( W gsum ( ( E o. g ) |` { 1 } ) ) ) ) ) ) |
245 |
|
eleq1 |
|- ( m = x -> ( m e. ( 1 ... n ) <-> x e. ( 1 ... n ) ) ) |
246 |
|
2fveq3 |
|- ( m = x -> ( 2nd ` ( g ` m ) ) = ( 2nd ` ( g ` x ) ) ) |
247 |
246
|
oveq2d |
|- ( m = x -> ( X E ( 2nd ` ( g ` m ) ) ) = ( X E ( 2nd ` ( g ` x ) ) ) ) |
248 |
|
oveq2 |
|- ( m = x -> ( 1 ... m ) = ( 1 ... x ) ) |
249 |
248
|
reseq2d |
|- ( m = x -> ( ( E o. g ) |` ( 1 ... m ) ) = ( ( E o. g ) |` ( 1 ... x ) ) ) |
250 |
249
|
oveq2d |
|- ( m = x -> ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) = ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) ) |
251 |
247 250
|
breq12d |
|- ( m = x -> ( ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) <-> ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) ) ) |
252 |
245 251
|
imbi12d |
|- ( m = x -> ( ( m e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) ) <-> ( x e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) ) ) ) |
253 |
252
|
imbi2d |
|- ( m = x -> ( ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( m e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) ) ) <-> ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( x e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) ) ) ) ) |
254 |
|
eleq1 |
|- ( m = ( x + 1 ) -> ( m e. ( 1 ... n ) <-> ( x + 1 ) e. ( 1 ... n ) ) ) |
255 |
|
2fveq3 |
|- ( m = ( x + 1 ) -> ( 2nd ` ( g ` m ) ) = ( 2nd ` ( g ` ( x + 1 ) ) ) ) |
256 |
255
|
oveq2d |
|- ( m = ( x + 1 ) -> ( X E ( 2nd ` ( g ` m ) ) ) = ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) ) |
257 |
|
oveq2 |
|- ( m = ( x + 1 ) -> ( 1 ... m ) = ( 1 ... ( x + 1 ) ) ) |
258 |
257
|
reseq2d |
|- ( m = ( x + 1 ) -> ( ( E o. g ) |` ( 1 ... m ) ) = ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) ) |
259 |
258
|
oveq2d |
|- ( m = ( x + 1 ) -> ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) = ( W gsum ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) ) ) |
260 |
256 259
|
breq12d |
|- ( m = ( x + 1 ) -> ( ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) <-> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) ) ) ) |
261 |
254 260
|
imbi12d |
|- ( m = ( x + 1 ) -> ( ( m e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) ) <-> ( ( x + 1 ) e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) ) ) ) ) |
262 |
261
|
imbi2d |
|- ( m = ( x + 1 ) -> ( ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( m e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) ) ) <-> ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( ( x + 1 ) e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) ) ) ) ) ) |
263 |
|
eleq1 |
|- ( m = n -> ( m e. ( 1 ... n ) <-> n e. ( 1 ... n ) ) ) |
264 |
|
2fveq3 |
|- ( m = n -> ( 2nd ` ( g ` m ) ) = ( 2nd ` ( g ` n ) ) ) |
265 |
264
|
oveq2d |
|- ( m = n -> ( X E ( 2nd ` ( g ` m ) ) ) = ( X E ( 2nd ` ( g ` n ) ) ) ) |
266 |
|
oveq2 |
|- ( m = n -> ( 1 ... m ) = ( 1 ... n ) ) |
267 |
266
|
reseq2d |
|- ( m = n -> ( ( E o. g ) |` ( 1 ... m ) ) = ( ( E o. g ) |` ( 1 ... n ) ) ) |
268 |
267
|
oveq2d |
|- ( m = n -> ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) = ( W gsum ( ( E o. g ) |` ( 1 ... n ) ) ) ) |
269 |
265 268
|
breq12d |
|- ( m = n -> ( ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) <-> ( X E ( 2nd ` ( g ` n ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... n ) ) ) ) ) |
270 |
263 269
|
imbi12d |
|- ( m = n -> ( ( m e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) ) <-> ( n e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` n ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... n ) ) ) ) ) ) |
271 |
270
|
imbi2d |
|- ( m = n -> ( ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( m e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) ) ) <-> ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( n e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` n ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... n ) ) ) ) ) ) ) |
272 |
7
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> E e. ( *Met ` V ) ) |
273 |
8
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> X e. V ) |
274 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
275 |
224 274
|
eleqtrdi |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> n e. ( ZZ>= ` 1 ) ) |
276 |
|
eluzfz1 |
|- ( n e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... n ) ) |
277 |
275 276
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> 1 e. ( 1 ... n ) ) |
278 |
49 277
|
ffvelrnd |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( g ` 1 ) e. ( V X. V ) ) |
279 |
|
xp2nd |
|- ( ( g ` 1 ) e. ( V X. V ) -> ( 2nd ` ( g ` 1 ) ) e. V ) |
280 |
278 279
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( 2nd ` ( g ` 1 ) ) e. V ) |
281 |
|
xmetcl |
|- ( ( E e. ( *Met ` V ) /\ X e. V /\ ( 2nd ` ( g ` 1 ) ) e. V ) -> ( X E ( 2nd ` ( g ` 1 ) ) ) e. RR* ) |
282 |
272 273 280 281
|
syl3anc |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( X E ( 2nd ` ( g ` 1 ) ) ) e. RR* ) |
283 |
282
|
xrleidd |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( X E ( 2nd ` ( g ` 1 ) ) ) <_ ( X E ( 2nd ` ( g ` 1 ) ) ) ) |
284 |
137
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> W e. Mnd ) |
285 |
84
|
a1i |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> 1 e. NN ) |
286 |
44 278
|
ffvelrnd |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( E ` ( g ` 1 ) ) e. ( RR* \ { -oo } ) ) |
287 |
|
2fveq3 |
|- ( j = 1 -> ( E ` ( g ` j ) ) = ( E ` ( g ` 1 ) ) ) |
288 |
64 287
|
gsumsn |
|- ( ( W e. Mnd /\ 1 e. NN /\ ( E ` ( g ` 1 ) ) e. ( RR* \ { -oo } ) ) -> ( W gsum ( j e. { 1 } |-> ( E ` ( g ` j ) ) ) ) = ( E ` ( g ` 1 ) ) ) |
289 |
284 285 286 288
|
syl3anc |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( W gsum ( j e. { 1 } |-> ( E ` ( g ` j ) ) ) ) = ( E ` ( g ` 1 ) ) ) |
290 |
272 30
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> E : ( V X. V ) --> RR* ) |
291 |
|
fcompt |
|- ( ( E : ( V X. V ) --> RR* /\ g : ( 1 ... n ) --> ( V X. V ) ) -> ( E o. g ) = ( j e. ( 1 ... n ) |-> ( E ` ( g ` j ) ) ) ) |
292 |
290 49 291
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( E o. g ) = ( j e. ( 1 ... n ) |-> ( E ` ( g ` j ) ) ) ) |
293 |
292
|
reseq1d |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( ( E o. g ) |` { 1 } ) = ( ( j e. ( 1 ... n ) |-> ( E ` ( g ` j ) ) ) |` { 1 } ) ) |
294 |
277
|
snssd |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> { 1 } C_ ( 1 ... n ) ) |
295 |
294
|
resmptd |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( ( j e. ( 1 ... n ) |-> ( E ` ( g ` j ) ) ) |` { 1 } ) = ( j e. { 1 } |-> ( E ` ( g ` j ) ) ) ) |
296 |
293 295
|
eqtrd |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( ( E o. g ) |` { 1 } ) = ( j e. { 1 } |-> ( E ` ( g ` j ) ) ) ) |
297 |
296
|
oveq2d |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( W gsum ( ( E o. g ) |` { 1 } ) ) = ( W gsum ( j e. { 1 } |-> ( E ` ( g ` j ) ) ) ) ) |
298 |
|
df-ov |
|- ( X E ( 2nd ` ( g ` 1 ) ) ) = ( E ` <. X , ( 2nd ` ( g ` 1 ) ) >. ) |
299 |
|
1st2nd2 |
|- ( ( g ` 1 ) e. ( V X. V ) -> ( g ` 1 ) = <. ( 1st ` ( g ` 1 ) ) , ( 2nd ` ( g ` 1 ) ) >. ) |
300 |
278 299
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( g ` 1 ) = <. ( 1st ` ( g ` 1 ) ) , ( 2nd ` ( g ` 1 ) ) >. ) |
301 |
219
|
simp1d |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) ) |
302 |
|
xp1st |
|- ( ( g ` 1 ) e. ( V X. V ) -> ( 1st ` ( g ` 1 ) ) e. V ) |
303 |
278 302
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( 1st ` ( g ` 1 ) ) e. V ) |
304 |
|
f1fveq |
|- ( ( F : V -1-1-> B /\ ( ( 1st ` ( g ` 1 ) ) e. V /\ X e. V ) ) -> ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) <-> ( 1st ` ( g ` 1 ) ) = X ) ) |
305 |
223 303 273 304
|
syl12anc |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) <-> ( 1st ` ( g ` 1 ) ) = X ) ) |
306 |
301 305
|
mpbid |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( 1st ` ( g ` 1 ) ) = X ) |
307 |
306
|
opeq1d |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> <. ( 1st ` ( g ` 1 ) ) , ( 2nd ` ( g ` 1 ) ) >. = <. X , ( 2nd ` ( g ` 1 ) ) >. ) |
308 |
300 307
|
eqtr2d |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> <. X , ( 2nd ` ( g ` 1 ) ) >. = ( g ` 1 ) ) |
309 |
308
|
fveq2d |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( E ` <. X , ( 2nd ` ( g ` 1 ) ) >. ) = ( E ` ( g ` 1 ) ) ) |
310 |
298 309
|
syl5eq |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( X E ( 2nd ` ( g ` 1 ) ) ) = ( E ` ( g ` 1 ) ) ) |
311 |
289 297 310
|
3eqtr4d |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( W gsum ( ( E o. g ) |` { 1 } ) ) = ( X E ( 2nd ` ( g ` 1 ) ) ) ) |
312 |
283 311
|
breqtrrd |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( X E ( 2nd ` ( g ` 1 ) ) ) <_ ( W gsum ( ( E o. g ) |` { 1 } ) ) ) |
313 |
312
|
a1d |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( 1 e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` 1 ) ) ) <_ ( W gsum ( ( E o. g ) |` { 1 } ) ) ) ) |
314 |
|
simprl |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> x e. NN ) |
315 |
314 274
|
eleqtrdi |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> x e. ( ZZ>= ` 1 ) ) |
316 |
|
simprr |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( x + 1 ) e. ( 1 ... n ) ) |
317 |
|
peano2fzr |
|- ( ( x e. ( ZZ>= ` 1 ) /\ ( x + 1 ) e. ( 1 ... n ) ) -> x e. ( 1 ... n ) ) |
318 |
315 316 317
|
syl2anc |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> x e. ( 1 ... n ) ) |
319 |
318
|
expr |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ x e. NN ) -> ( ( x + 1 ) e. ( 1 ... n ) -> x e. ( 1 ... n ) ) ) |
320 |
319
|
imim1d |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ x e. NN ) -> ( ( x e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) ) -> ( ( x + 1 ) e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) ) ) ) |
321 |
272
|
adantr |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> E e. ( *Met ` V ) ) |
322 |
273
|
adantr |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> X e. V ) |
323 |
49
|
adantr |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> g : ( 1 ... n ) --> ( V X. V ) ) |
324 |
323 318
|
ffvelrnd |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( g ` x ) e. ( V X. V ) ) |
325 |
|
xp2nd |
|- ( ( g ` x ) e. ( V X. V ) -> ( 2nd ` ( g ` x ) ) e. V ) |
326 |
324 325
|
syl |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( 2nd ` ( g ` x ) ) e. V ) |
327 |
|
xmetcl |
|- ( ( E e. ( *Met ` V ) /\ X e. V /\ ( 2nd ` ( g ` x ) ) e. V ) -> ( X E ( 2nd ` ( g ` x ) ) ) e. RR* ) |
328 |
321 322 326 327
|
syl3anc |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( X E ( 2nd ` ( g ` x ) ) ) e. RR* ) |
329 |
66
|
a1i |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> W e. CMnd ) |
330 |
|
fzfid |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( 1 ... x ) e. Fin ) |
331 |
51
|
adantr |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( E o. g ) : ( 1 ... n ) --> ( RR* \ { -oo } ) ) |
332 |
|
fzsuc |
|- ( x e. ( ZZ>= ` 1 ) -> ( 1 ... ( x + 1 ) ) = ( ( 1 ... x ) u. { ( x + 1 ) } ) ) |
333 |
315 332
|
syl |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( 1 ... ( x + 1 ) ) = ( ( 1 ... x ) u. { ( x + 1 ) } ) ) |
334 |
|
elfzuz3 |
|- ( ( x + 1 ) e. ( 1 ... n ) -> n e. ( ZZ>= ` ( x + 1 ) ) ) |
335 |
334
|
ad2antll |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> n e. ( ZZ>= ` ( x + 1 ) ) ) |
336 |
|
fzss2 |
|- ( n e. ( ZZ>= ` ( x + 1 ) ) -> ( 1 ... ( x + 1 ) ) C_ ( 1 ... n ) ) |
337 |
335 336
|
syl |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( 1 ... ( x + 1 ) ) C_ ( 1 ... n ) ) |
338 |
333 337
|
eqsstrrd |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( 1 ... x ) u. { ( x + 1 ) } ) C_ ( 1 ... n ) ) |
339 |
338
|
unssad |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( 1 ... x ) C_ ( 1 ... n ) ) |
340 |
331 339
|
fssresd |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( E o. g ) |` ( 1 ... x ) ) : ( 1 ... x ) --> ( RR* \ { -oo } ) ) |
341 |
68
|
a1i |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> 0 e. _V ) |
342 |
340 330 341
|
fdmfifsupp |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( E o. g ) |` ( 1 ... x ) ) finSupp 0 ) |
343 |
64 65 329 330 340 342
|
gsumcl |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) e. ( RR* \ { -oo } ) ) |
344 |
343
|
eldifad |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) e. RR* ) |
345 |
321 30
|
syl |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> E : ( V X. V ) --> RR* ) |
346 |
323 316
|
ffvelrnd |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( g ` ( x + 1 ) ) e. ( V X. V ) ) |
347 |
345 346
|
ffvelrnd |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( E ` ( g ` ( x + 1 ) ) ) e. RR* ) |
348 |
|
xleadd1a |
|- ( ( ( ( X E ( 2nd ` ( g ` x ) ) ) e. RR* /\ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) e. RR* /\ ( E ` ( g ` ( x + 1 ) ) ) e. RR* ) /\ ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) ) -> ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) |
349 |
348
|
ex |
|- ( ( ( X E ( 2nd ` ( g ` x ) ) ) e. RR* /\ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) e. RR* /\ ( E ` ( g ` ( x + 1 ) ) ) e. RR* ) -> ( ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) -> ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) ) |
350 |
328 344 347 349
|
syl3anc |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) -> ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) ) |
351 |
|
xp2nd |
|- ( ( g ` ( x + 1 ) ) e. ( V X. V ) -> ( 2nd ` ( g ` ( x + 1 ) ) ) e. V ) |
352 |
346 351
|
syl |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( 2nd ` ( g ` ( x + 1 ) ) ) e. V ) |
353 |
|
xmettri |
|- ( ( E e. ( *Met ` V ) /\ ( X e. V /\ ( 2nd ` ( g ` ( x + 1 ) ) ) e. V /\ ( 2nd ` ( g ` x ) ) e. V ) ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( ( 2nd ` ( g ` x ) ) E ( 2nd ` ( g ` ( x + 1 ) ) ) ) ) ) |
354 |
321 322 352 326 353
|
syl13anc |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( ( 2nd ` ( g ` x ) ) E ( 2nd ` ( g ` ( x + 1 ) ) ) ) ) ) |
355 |
|
1st2nd2 |
|- ( ( g ` ( x + 1 ) ) e. ( V X. V ) -> ( g ` ( x + 1 ) ) = <. ( 1st ` ( g ` ( x + 1 ) ) ) , ( 2nd ` ( g ` ( x + 1 ) ) ) >. ) |
356 |
346 355
|
syl |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( g ` ( x + 1 ) ) = <. ( 1st ` ( g ` ( x + 1 ) ) ) , ( 2nd ` ( g ` ( x + 1 ) ) ) >. ) |
357 |
|
2fveq3 |
|- ( i = x -> ( 2nd ` ( g ` i ) ) = ( 2nd ` ( g ` x ) ) ) |
358 |
357
|
fveq2d |
|- ( i = x -> ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 2nd ` ( g ` x ) ) ) ) |
359 |
|
fvoveq1 |
|- ( i = x -> ( g ` ( i + 1 ) ) = ( g ` ( x + 1 ) ) ) |
360 |
359
|
fveq2d |
|- ( i = x -> ( 1st ` ( g ` ( i + 1 ) ) ) = ( 1st ` ( g ` ( x + 1 ) ) ) ) |
361 |
360
|
fveq2d |
|- ( i = x -> ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) = ( F ` ( 1st ` ( g ` ( x + 1 ) ) ) ) ) |
362 |
358 361
|
eqeq12d |
|- ( i = x -> ( ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) <-> ( F ` ( 2nd ` ( g ` x ) ) ) = ( F ` ( 1st ` ( g ` ( x + 1 ) ) ) ) ) ) |
363 |
219
|
simp3d |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) |
364 |
363
|
adantr |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) |
365 |
|
nnz |
|- ( x e. NN -> x e. ZZ ) |
366 |
365
|
ad2antrl |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> x e. ZZ ) |
367 |
|
eluzp1m1 |
|- ( ( x e. ZZ /\ n e. ( ZZ>= ` ( x + 1 ) ) ) -> ( n - 1 ) e. ( ZZ>= ` x ) ) |
368 |
366 335 367
|
syl2anc |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( n - 1 ) e. ( ZZ>= ` x ) ) |
369 |
|
elfzuzb |
|- ( x e. ( 1 ... ( n - 1 ) ) <-> ( x e. ( ZZ>= ` 1 ) /\ ( n - 1 ) e. ( ZZ>= ` x ) ) ) |
370 |
315 368 369
|
sylanbrc |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> x e. ( 1 ... ( n - 1 ) ) ) |
371 |
362 364 370
|
rspcdva |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( F ` ( 2nd ` ( g ` x ) ) ) = ( F ` ( 1st ` ( g ` ( x + 1 ) ) ) ) ) |
372 |
223
|
adantr |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> F : V -1-1-> B ) |
373 |
|
xp1st |
|- ( ( g ` ( x + 1 ) ) e. ( V X. V ) -> ( 1st ` ( g ` ( x + 1 ) ) ) e. V ) |
374 |
346 373
|
syl |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( 1st ` ( g ` ( x + 1 ) ) ) e. V ) |
375 |
|
f1fveq |
|- ( ( F : V -1-1-> B /\ ( ( 2nd ` ( g ` x ) ) e. V /\ ( 1st ` ( g ` ( x + 1 ) ) ) e. V ) ) -> ( ( F ` ( 2nd ` ( g ` x ) ) ) = ( F ` ( 1st ` ( g ` ( x + 1 ) ) ) ) <-> ( 2nd ` ( g ` x ) ) = ( 1st ` ( g ` ( x + 1 ) ) ) ) ) |
376 |
372 326 374 375
|
syl12anc |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( F ` ( 2nd ` ( g ` x ) ) ) = ( F ` ( 1st ` ( g ` ( x + 1 ) ) ) ) <-> ( 2nd ` ( g ` x ) ) = ( 1st ` ( g ` ( x + 1 ) ) ) ) ) |
377 |
371 376
|
mpbid |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( 2nd ` ( g ` x ) ) = ( 1st ` ( g ` ( x + 1 ) ) ) ) |
378 |
377
|
opeq1d |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> <. ( 2nd ` ( g ` x ) ) , ( 2nd ` ( g ` ( x + 1 ) ) ) >. = <. ( 1st ` ( g ` ( x + 1 ) ) ) , ( 2nd ` ( g ` ( x + 1 ) ) ) >. ) |
379 |
356 378
|
eqtr4d |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( g ` ( x + 1 ) ) = <. ( 2nd ` ( g ` x ) ) , ( 2nd ` ( g ` ( x + 1 ) ) ) >. ) |
380 |
379
|
fveq2d |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( E ` ( g ` ( x + 1 ) ) ) = ( E ` <. ( 2nd ` ( g ` x ) ) , ( 2nd ` ( g ` ( x + 1 ) ) ) >. ) ) |
381 |
|
df-ov |
|- ( ( 2nd ` ( g ` x ) ) E ( 2nd ` ( g ` ( x + 1 ) ) ) ) = ( E ` <. ( 2nd ` ( g ` x ) ) , ( 2nd ` ( g ` ( x + 1 ) ) ) >. ) |
382 |
380 381
|
eqtr4di |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( E ` ( g ` ( x + 1 ) ) ) = ( ( 2nd ` ( g ` x ) ) E ( 2nd ` ( g ` ( x + 1 ) ) ) ) ) |
383 |
382
|
oveq2d |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) = ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( ( 2nd ` ( g ` x ) ) E ( 2nd ` ( g ` ( x + 1 ) ) ) ) ) ) |
384 |
354 383
|
breqtrrd |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) |
385 |
|
xmetcl |
|- ( ( E e. ( *Met ` V ) /\ X e. V /\ ( 2nd ` ( g ` ( x + 1 ) ) ) e. V ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) e. RR* ) |
386 |
321 322 352 385
|
syl3anc |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) e. RR* ) |
387 |
328 347
|
xaddcld |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) e. RR* ) |
388 |
344 347
|
xaddcld |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) e. RR* ) |
389 |
|
xrletr |
|- ( ( ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) e. RR* /\ ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) e. RR* /\ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) e. RR* ) -> ( ( ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) /\ ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) ) |
390 |
386 387 388 389
|
syl3anc |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) /\ ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) ) |
391 |
384 390
|
mpand |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) ) |
392 |
350 391
|
syld |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) ) |
393 |
|
xrex |
|- RR* e. _V |
394 |
393
|
difexi |
|- ( RR* \ { -oo } ) e. _V |
395 |
10 24
|
ressplusg |
|- ( ( RR* \ { -oo } ) e. _V -> +e = ( +g ` W ) ) |
396 |
394 395
|
ax-mp |
|- +e = ( +g ` W ) |
397 |
44
|
ad2antrr |
|- ( ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) /\ j e. ( 1 ... x ) ) -> E : ( V X. V ) --> ( RR* \ { -oo } ) ) |
398 |
|
fzelp1 |
|- ( j e. ( 1 ... x ) -> j e. ( 1 ... ( x + 1 ) ) ) |
399 |
49
|
ad2antrr |
|- ( ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) /\ j e. ( 1 ... ( x + 1 ) ) ) -> g : ( 1 ... n ) --> ( V X. V ) ) |
400 |
337
|
sselda |
|- ( ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) /\ j e. ( 1 ... ( x + 1 ) ) ) -> j e. ( 1 ... n ) ) |
401 |
399 400
|
ffvelrnd |
|- ( ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) /\ j e. ( 1 ... ( x + 1 ) ) ) -> ( g ` j ) e. ( V X. V ) ) |
402 |
398 401
|
sylan2 |
|- ( ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) /\ j e. ( 1 ... x ) ) -> ( g ` j ) e. ( V X. V ) ) |
403 |
397 402
|
ffvelrnd |
|- ( ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) /\ j e. ( 1 ... x ) ) -> ( E ` ( g ` j ) ) e. ( RR* \ { -oo } ) ) |
404 |
|
fzp1disj |
|- ( ( 1 ... x ) i^i { ( x + 1 ) } ) = (/) |
405 |
404
|
a1i |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( 1 ... x ) i^i { ( x + 1 ) } ) = (/) ) |
406 |
|
disjsn |
|- ( ( ( 1 ... x ) i^i { ( x + 1 ) } ) = (/) <-> -. ( x + 1 ) e. ( 1 ... x ) ) |
407 |
405 406
|
sylib |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> -. ( x + 1 ) e. ( 1 ... x ) ) |
408 |
44
|
adantr |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> E : ( V X. V ) --> ( RR* \ { -oo } ) ) |
409 |
408 346
|
ffvelrnd |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( E ` ( g ` ( x + 1 ) ) ) e. ( RR* \ { -oo } ) ) |
410 |
|
2fveq3 |
|- ( j = ( x + 1 ) -> ( E ` ( g ` j ) ) = ( E ` ( g ` ( x + 1 ) ) ) ) |
411 |
64 396 329 330 403 316 407 409 410
|
gsumunsn |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( W gsum ( j e. ( ( 1 ... x ) u. { ( x + 1 ) } ) |-> ( E ` ( g ` j ) ) ) ) = ( ( W gsum ( j e. ( 1 ... x ) |-> ( E ` ( g ` j ) ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) |
412 |
292
|
adantr |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( E o. g ) = ( j e. ( 1 ... n ) |-> ( E ` ( g ` j ) ) ) ) |
413 |
412 333
|
reseq12d |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) = ( ( j e. ( 1 ... n ) |-> ( E ` ( g ` j ) ) ) |` ( ( 1 ... x ) u. { ( x + 1 ) } ) ) ) |
414 |
338
|
resmptd |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( j e. ( 1 ... n ) |-> ( E ` ( g ` j ) ) ) |` ( ( 1 ... x ) u. { ( x + 1 ) } ) ) = ( j e. ( ( 1 ... x ) u. { ( x + 1 ) } ) |-> ( E ` ( g ` j ) ) ) ) |
415 |
413 414
|
eqtrd |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) = ( j e. ( ( 1 ... x ) u. { ( x + 1 ) } ) |-> ( E ` ( g ` j ) ) ) ) |
416 |
415
|
oveq2d |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( W gsum ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) ) = ( W gsum ( j e. ( ( 1 ... x ) u. { ( x + 1 ) } ) |-> ( E ` ( g ` j ) ) ) ) ) |
417 |
412
|
reseq1d |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( E o. g ) |` ( 1 ... x ) ) = ( ( j e. ( 1 ... n ) |-> ( E ` ( g ` j ) ) ) |` ( 1 ... x ) ) ) |
418 |
339
|
resmptd |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( j e. ( 1 ... n ) |-> ( E ` ( g ` j ) ) ) |` ( 1 ... x ) ) = ( j e. ( 1 ... x ) |-> ( E ` ( g ` j ) ) ) ) |
419 |
417 418
|
eqtrd |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( E o. g ) |` ( 1 ... x ) ) = ( j e. ( 1 ... x ) |-> ( E ` ( g ` j ) ) ) ) |
420 |
419
|
oveq2d |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) = ( W gsum ( j e. ( 1 ... x ) |-> ( E ` ( g ` j ) ) ) ) ) |
421 |
420
|
oveq1d |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) = ( ( W gsum ( j e. ( 1 ... x ) |-> ( E ` ( g ` j ) ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) |
422 |
411 416 421
|
3eqtr4d |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( W gsum ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) ) = ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) |
423 |
422
|
breq2d |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) ) <-> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) ) |
424 |
392 423
|
sylibrd |
|- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) ) ) ) |
425 |
320 424
|
animpimp2impd |
|- ( x e. NN -> ( ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( x e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) ) ) -> ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( ( x + 1 ) e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) ) ) ) ) ) |
426 |
244 253 262 271 313 425
|
nnind |
|- ( n e. NN -> ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( n e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` n ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... n ) ) ) ) ) ) |
427 |
224 426
|
mpcom |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( n e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` n ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... n ) ) ) ) ) |
428 |
226 427
|
mpd |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( X E ( 2nd ` ( g ` n ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... n ) ) ) ) |
429 |
234 428
|
eqbrtrrd |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( X E Y ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... n ) ) ) ) |
430 |
|
ffn |
|- ( ( E o. g ) : ( 1 ... n ) --> ( RR* \ { -oo } ) -> ( E o. g ) Fn ( 1 ... n ) ) |
431 |
|
fnresdm |
|- ( ( E o. g ) Fn ( 1 ... n ) -> ( ( E o. g ) |` ( 1 ... n ) ) = ( E o. g ) ) |
432 |
51 430 431
|
3syl |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( ( E o. g ) |` ( 1 ... n ) ) = ( E o. g ) ) |
433 |
432
|
oveq2d |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( W gsum ( ( E o. g ) |` ( 1 ... n ) ) ) = ( W gsum ( E o. g ) ) ) |
434 |
62 433
|
eqtr4d |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( RR*s gsum ( E o. g ) ) = ( W gsum ( ( E o. g ) |` ( 1 ... n ) ) ) ) |
435 |
429 434
|
breqtrrd |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( X E Y ) <_ ( RR*s gsum ( E o. g ) ) ) |
436 |
|
breq2 |
|- ( p = ( RR*s gsum ( E o. g ) ) -> ( ( X E Y ) <_ p <-> ( X E Y ) <_ ( RR*s gsum ( E o. g ) ) ) ) |
437 |
435 436
|
syl5ibrcom |
|- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( p = ( RR*s gsum ( E o. g ) ) -> ( X E Y ) <_ p ) ) |
438 |
437
|
rexlimdva |
|- ( ( ph /\ n e. NN ) -> ( E. g e. S p = ( RR*s gsum ( E o. g ) ) -> ( X E Y ) <_ p ) ) |
439 |
216 438
|
syl5bi |
|- ( ( ph /\ n e. NN ) -> ( p e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) -> ( X E Y ) <_ p ) ) |
440 |
439
|
rexlimdva |
|- ( ph -> ( E. n e. NN p e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) -> ( X E Y ) <_ p ) ) |
441 |
214 440
|
syl5bi |
|- ( ph -> ( p e. T -> ( X E Y ) <_ p ) ) |
442 |
441
|
ralrimiv |
|- ( ph -> A. p e. T ( X E Y ) <_ p ) |
443 |
|
infxrgelb |
|- ( ( T C_ RR* /\ ( X E Y ) e. RR* ) -> ( ( X E Y ) <_ inf ( T , RR* , < ) <-> A. p e. T ( X E Y ) <_ p ) ) |
444 |
79 83 443
|
syl2anc |
|- ( ph -> ( ( X E Y ) <_ inf ( T , RR* , < ) <-> A. p e. T ( X E Y ) <_ p ) ) |
445 |
442 444
|
mpbird |
|- ( ph -> ( X E Y ) <_ inf ( T , RR* , < ) ) |
446 |
81 83 211 445
|
xrletrid |
|- ( ph -> inf ( T , RR* , < ) = ( X E Y ) ) |
447 |
22 446
|
eqtrd |
|- ( ph -> ( ( F ` X ) D ( F ` Y ) ) = ( X E Y ) ) |