| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imasdsf1o.u |  |-  ( ph -> U = ( F "s R ) ) | 
						
							| 2 |  | imasdsf1o.v |  |-  ( ph -> V = ( Base ` R ) ) | 
						
							| 3 |  | imasdsf1o.f |  |-  ( ph -> F : V -1-1-onto-> B ) | 
						
							| 4 |  | imasdsf1o.r |  |-  ( ph -> R e. Z ) | 
						
							| 5 |  | imasdsf1o.e |  |-  E = ( ( dist ` R ) |` ( V X. V ) ) | 
						
							| 6 |  | imasdsf1o.d |  |-  D = ( dist ` U ) | 
						
							| 7 |  | imasdsf1o.m |  |-  ( ph -> E e. ( *Met ` V ) ) | 
						
							| 8 |  | imasdsf1o.x |  |-  ( ph -> X e. V ) | 
						
							| 9 |  | imasdsf1o.y |  |-  ( ph -> Y e. V ) | 
						
							| 10 |  | imasdsf1o.w |  |-  W = ( RR*s |`s ( RR* \ { -oo } ) ) | 
						
							| 11 |  | imasdsf1o.s |  |-  S = { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( h ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } | 
						
							| 12 |  | imasdsf1o.t |  |-  T = U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) | 
						
							| 13 |  | f1ofo |  |-  ( F : V -1-1-onto-> B -> F : V -onto-> B ) | 
						
							| 14 | 3 13 | syl |  |-  ( ph -> F : V -onto-> B ) | 
						
							| 15 |  | eqid |  |-  ( dist ` R ) = ( dist ` R ) | 
						
							| 16 |  | f1of |  |-  ( F : V -1-1-onto-> B -> F : V --> B ) | 
						
							| 17 | 3 16 | syl |  |-  ( ph -> F : V --> B ) | 
						
							| 18 | 17 8 | ffvelcdmd |  |-  ( ph -> ( F ` X ) e. B ) | 
						
							| 19 | 17 9 | ffvelcdmd |  |-  ( ph -> ( F ` Y ) e. B ) | 
						
							| 20 | 1 2 14 4 15 6 18 19 11 5 | imasdsval2 |  |-  ( ph -> ( ( F ` X ) D ( F ` Y ) ) = inf ( U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) ) | 
						
							| 21 | 12 | infeq1i |  |-  inf ( T , RR* , < ) = inf ( U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) | 
						
							| 22 | 20 21 | eqtr4di |  |-  ( ph -> ( ( F ` X ) D ( F ` Y ) ) = inf ( T , RR* , < ) ) | 
						
							| 23 |  | xrsbas |  |-  RR* = ( Base ` RR*s ) | 
						
							| 24 |  | xrsadd |  |-  +e = ( +g ` RR*s ) | 
						
							| 25 |  | xrsex |  |-  RR*s e. _V | 
						
							| 26 | 25 | a1i |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> RR*s e. _V ) | 
						
							| 27 |  | fzfid |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( 1 ... n ) e. Fin ) | 
						
							| 28 |  | difss |  |-  ( RR* \ { -oo } ) C_ RR* | 
						
							| 29 | 28 | a1i |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( RR* \ { -oo } ) C_ RR* ) | 
						
							| 30 |  | xmetf |  |-  ( E e. ( *Met ` V ) -> E : ( V X. V ) --> RR* ) | 
						
							| 31 |  | ffn |  |-  ( E : ( V X. V ) --> RR* -> E Fn ( V X. V ) ) | 
						
							| 32 | 7 30 31 | 3syl |  |-  ( ph -> E Fn ( V X. V ) ) | 
						
							| 33 |  | xmetcl |  |-  ( ( E e. ( *Met ` V ) /\ f e. V /\ g e. V ) -> ( f E g ) e. RR* ) | 
						
							| 34 |  | xmetge0 |  |-  ( ( E e. ( *Met ` V ) /\ f e. V /\ g e. V ) -> 0 <_ ( f E g ) ) | 
						
							| 35 |  | ge0nemnf |  |-  ( ( ( f E g ) e. RR* /\ 0 <_ ( f E g ) ) -> ( f E g ) =/= -oo ) | 
						
							| 36 | 33 34 35 | syl2anc |  |-  ( ( E e. ( *Met ` V ) /\ f e. V /\ g e. V ) -> ( f E g ) =/= -oo ) | 
						
							| 37 |  | eldifsn |  |-  ( ( f E g ) e. ( RR* \ { -oo } ) <-> ( ( f E g ) e. RR* /\ ( f E g ) =/= -oo ) ) | 
						
							| 38 | 33 36 37 | sylanbrc |  |-  ( ( E e. ( *Met ` V ) /\ f e. V /\ g e. V ) -> ( f E g ) e. ( RR* \ { -oo } ) ) | 
						
							| 39 | 38 | 3expb |  |-  ( ( E e. ( *Met ` V ) /\ ( f e. V /\ g e. V ) ) -> ( f E g ) e. ( RR* \ { -oo } ) ) | 
						
							| 40 | 7 39 | sylan |  |-  ( ( ph /\ ( f e. V /\ g e. V ) ) -> ( f E g ) e. ( RR* \ { -oo } ) ) | 
						
							| 41 | 40 | ralrimivva |  |-  ( ph -> A. f e. V A. g e. V ( f E g ) e. ( RR* \ { -oo } ) ) | 
						
							| 42 |  | ffnov |  |-  ( E : ( V X. V ) --> ( RR* \ { -oo } ) <-> ( E Fn ( V X. V ) /\ A. f e. V A. g e. V ( f E g ) e. ( RR* \ { -oo } ) ) ) | 
						
							| 43 | 32 41 42 | sylanbrc |  |-  ( ph -> E : ( V X. V ) --> ( RR* \ { -oo } ) ) | 
						
							| 44 | 43 | ad2antrr |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> E : ( V X. V ) --> ( RR* \ { -oo } ) ) | 
						
							| 45 | 11 | ssrab3 |  |-  S C_ ( ( V X. V ) ^m ( 1 ... n ) ) | 
						
							| 46 | 45 | a1i |  |-  ( ( ph /\ n e. NN ) -> S C_ ( ( V X. V ) ^m ( 1 ... n ) ) ) | 
						
							| 47 | 46 | sselda |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> g e. ( ( V X. V ) ^m ( 1 ... n ) ) ) | 
						
							| 48 |  | elmapi |  |-  ( g e. ( ( V X. V ) ^m ( 1 ... n ) ) -> g : ( 1 ... n ) --> ( V X. V ) ) | 
						
							| 49 | 47 48 | syl |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> g : ( 1 ... n ) --> ( V X. V ) ) | 
						
							| 50 |  | fco |  |-  ( ( E : ( V X. V ) --> ( RR* \ { -oo } ) /\ g : ( 1 ... n ) --> ( V X. V ) ) -> ( E o. g ) : ( 1 ... n ) --> ( RR* \ { -oo } ) ) | 
						
							| 51 | 44 49 50 | syl2anc |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( E o. g ) : ( 1 ... n ) --> ( RR* \ { -oo } ) ) | 
						
							| 52 |  | 0re |  |-  0 e. RR | 
						
							| 53 |  | rexr |  |-  ( 0 e. RR -> 0 e. RR* ) | 
						
							| 54 |  | renemnf |  |-  ( 0 e. RR -> 0 =/= -oo ) | 
						
							| 55 |  | eldifsn |  |-  ( 0 e. ( RR* \ { -oo } ) <-> ( 0 e. RR* /\ 0 =/= -oo ) ) | 
						
							| 56 | 53 54 55 | sylanbrc |  |-  ( 0 e. RR -> 0 e. ( RR* \ { -oo } ) ) | 
						
							| 57 | 52 56 | mp1i |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> 0 e. ( RR* \ { -oo } ) ) | 
						
							| 58 |  | xaddlid |  |-  ( x e. RR* -> ( 0 +e x ) = x ) | 
						
							| 59 |  | xaddrid |  |-  ( x e. RR* -> ( x +e 0 ) = x ) | 
						
							| 60 | 58 59 | jca |  |-  ( x e. RR* -> ( ( 0 +e x ) = x /\ ( x +e 0 ) = x ) ) | 
						
							| 61 | 60 | adantl |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ x e. RR* ) -> ( ( 0 +e x ) = x /\ ( x +e 0 ) = x ) ) | 
						
							| 62 | 23 24 10 26 27 29 51 57 61 | gsumress |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( RR*s gsum ( E o. g ) ) = ( W gsum ( E o. g ) ) ) | 
						
							| 63 | 10 23 | ressbas2 |  |-  ( ( RR* \ { -oo } ) C_ RR* -> ( RR* \ { -oo } ) = ( Base ` W ) ) | 
						
							| 64 | 28 63 | ax-mp |  |-  ( RR* \ { -oo } ) = ( Base ` W ) | 
						
							| 65 | 10 | xrs10 |  |-  0 = ( 0g ` W ) | 
						
							| 66 | 10 | xrs1cmn |  |-  W e. CMnd | 
						
							| 67 | 66 | a1i |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> W e. CMnd ) | 
						
							| 68 |  | c0ex |  |-  0 e. _V | 
						
							| 69 | 68 | a1i |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> 0 e. _V ) | 
						
							| 70 | 51 27 69 | fdmfifsupp |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( E o. g ) finSupp 0 ) | 
						
							| 71 | 64 65 67 27 51 70 | gsumcl |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( W gsum ( E o. g ) ) e. ( RR* \ { -oo } ) ) | 
						
							| 72 | 62 71 | eqeltrd |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( RR*s gsum ( E o. g ) ) e. ( RR* \ { -oo } ) ) | 
						
							| 73 | 72 | eldifad |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( RR*s gsum ( E o. g ) ) e. RR* ) | 
						
							| 74 | 73 | fmpttd |  |-  ( ( ph /\ n e. NN ) -> ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) : S --> RR* ) | 
						
							| 75 | 74 | frnd |  |-  ( ( ph /\ n e. NN ) -> ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) C_ RR* ) | 
						
							| 76 | 75 | ralrimiva |  |-  ( ph -> A. n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) C_ RR* ) | 
						
							| 77 |  | iunss |  |-  ( U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) C_ RR* <-> A. n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) C_ RR* ) | 
						
							| 78 | 76 77 | sylibr |  |-  ( ph -> U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) C_ RR* ) | 
						
							| 79 | 12 78 | eqsstrid |  |-  ( ph -> T C_ RR* ) | 
						
							| 80 |  | infxrcl |  |-  ( T C_ RR* -> inf ( T , RR* , < ) e. RR* ) | 
						
							| 81 | 79 80 | syl |  |-  ( ph -> inf ( T , RR* , < ) e. RR* ) | 
						
							| 82 |  | xmetcl |  |-  ( ( E e. ( *Met ` V ) /\ X e. V /\ Y e. V ) -> ( X E Y ) e. RR* ) | 
						
							| 83 | 7 8 9 82 | syl3anc |  |-  ( ph -> ( X E Y ) e. RR* ) | 
						
							| 84 |  | 1nn |  |-  1 e. NN | 
						
							| 85 |  | 1ex |  |-  1 e. _V | 
						
							| 86 |  | opex |  |-  <. X , Y >. e. _V | 
						
							| 87 | 85 86 | f1osn |  |-  { <. 1 , <. X , Y >. >. } : { 1 } -1-1-onto-> { <. X , Y >. } | 
						
							| 88 |  | f1of |  |-  ( { <. 1 , <. X , Y >. >. } : { 1 } -1-1-onto-> { <. X , Y >. } -> { <. 1 , <. X , Y >. >. } : { 1 } --> { <. X , Y >. } ) | 
						
							| 89 | 87 88 | ax-mp |  |-  { <. 1 , <. X , Y >. >. } : { 1 } --> { <. X , Y >. } | 
						
							| 90 | 8 9 | opelxpd |  |-  ( ph -> <. X , Y >. e. ( V X. V ) ) | 
						
							| 91 | 90 | snssd |  |-  ( ph -> { <. X , Y >. } C_ ( V X. V ) ) | 
						
							| 92 |  | fss |  |-  ( ( { <. 1 , <. X , Y >. >. } : { 1 } --> { <. X , Y >. } /\ { <. X , Y >. } C_ ( V X. V ) ) -> { <. 1 , <. X , Y >. >. } : { 1 } --> ( V X. V ) ) | 
						
							| 93 | 89 91 92 | sylancr |  |-  ( ph -> { <. 1 , <. X , Y >. >. } : { 1 } --> ( V X. V ) ) | 
						
							| 94 | 7 | elfvexd |  |-  ( ph -> V e. _V ) | 
						
							| 95 | 94 94 | xpexd |  |-  ( ph -> ( V X. V ) e. _V ) | 
						
							| 96 |  | snex |  |-  { 1 } e. _V | 
						
							| 97 |  | elmapg |  |-  ( ( ( V X. V ) e. _V /\ { 1 } e. _V ) -> ( { <. 1 , <. X , Y >. >. } e. ( ( V X. V ) ^m { 1 } ) <-> { <. 1 , <. X , Y >. >. } : { 1 } --> ( V X. V ) ) ) | 
						
							| 98 | 95 96 97 | sylancl |  |-  ( ph -> ( { <. 1 , <. X , Y >. >. } e. ( ( V X. V ) ^m { 1 } ) <-> { <. 1 , <. X , Y >. >. } : { 1 } --> ( V X. V ) ) ) | 
						
							| 99 | 93 98 | mpbird |  |-  ( ph -> { <. 1 , <. X , Y >. >. } e. ( ( V X. V ) ^m { 1 } ) ) | 
						
							| 100 |  | op1stg |  |-  ( ( X e. V /\ Y e. V ) -> ( 1st ` <. X , Y >. ) = X ) | 
						
							| 101 | 8 9 100 | syl2anc |  |-  ( ph -> ( 1st ` <. X , Y >. ) = X ) | 
						
							| 102 | 101 | fveq2d |  |-  ( ph -> ( F ` ( 1st ` <. X , Y >. ) ) = ( F ` X ) ) | 
						
							| 103 |  | op2ndg |  |-  ( ( X e. V /\ Y e. V ) -> ( 2nd ` <. X , Y >. ) = Y ) | 
						
							| 104 | 8 9 103 | syl2anc |  |-  ( ph -> ( 2nd ` <. X , Y >. ) = Y ) | 
						
							| 105 | 104 | fveq2d |  |-  ( ph -> ( F ` ( 2nd ` <. X , Y >. ) ) = ( F ` Y ) ) | 
						
							| 106 | 102 105 | jca |  |-  ( ph -> ( ( F ` ( 1st ` <. X , Y >. ) ) = ( F ` X ) /\ ( F ` ( 2nd ` <. X , Y >. ) ) = ( F ` Y ) ) ) | 
						
							| 107 | 25 | a1i |  |-  ( ph -> RR*s e. _V ) | 
						
							| 108 |  | snfi |  |-  { 1 } e. Fin | 
						
							| 109 | 108 | a1i |  |-  ( ph -> { 1 } e. Fin ) | 
						
							| 110 | 28 | a1i |  |-  ( ph -> ( RR* \ { -oo } ) C_ RR* ) | 
						
							| 111 |  | xmetge0 |  |-  ( ( E e. ( *Met ` V ) /\ X e. V /\ Y e. V ) -> 0 <_ ( X E Y ) ) | 
						
							| 112 | 7 8 9 111 | syl3anc |  |-  ( ph -> 0 <_ ( X E Y ) ) | 
						
							| 113 |  | ge0nemnf |  |-  ( ( ( X E Y ) e. RR* /\ 0 <_ ( X E Y ) ) -> ( X E Y ) =/= -oo ) | 
						
							| 114 | 83 112 113 | syl2anc |  |-  ( ph -> ( X E Y ) =/= -oo ) | 
						
							| 115 |  | eldifsn |  |-  ( ( X E Y ) e. ( RR* \ { -oo } ) <-> ( ( X E Y ) e. RR* /\ ( X E Y ) =/= -oo ) ) | 
						
							| 116 | 83 114 115 | sylanbrc |  |-  ( ph -> ( X E Y ) e. ( RR* \ { -oo } ) ) | 
						
							| 117 |  | fconst6g |  |-  ( ( X E Y ) e. ( RR* \ { -oo } ) -> ( { 1 } X. { ( X E Y ) } ) : { 1 } --> ( RR* \ { -oo } ) ) | 
						
							| 118 | 116 117 | syl |  |-  ( ph -> ( { 1 } X. { ( X E Y ) } ) : { 1 } --> ( RR* \ { -oo } ) ) | 
						
							| 119 |  | fcoconst |  |-  ( ( E Fn ( V X. V ) /\ <. X , Y >. e. ( V X. V ) ) -> ( E o. ( { 1 } X. { <. X , Y >. } ) ) = ( { 1 } X. { ( E ` <. X , Y >. ) } ) ) | 
						
							| 120 | 32 90 119 | syl2anc |  |-  ( ph -> ( E o. ( { 1 } X. { <. X , Y >. } ) ) = ( { 1 } X. { ( E ` <. X , Y >. ) } ) ) | 
						
							| 121 | 85 86 | xpsn |  |-  ( { 1 } X. { <. X , Y >. } ) = { <. 1 , <. X , Y >. >. } | 
						
							| 122 | 121 | coeq2i |  |-  ( E o. ( { 1 } X. { <. X , Y >. } ) ) = ( E o. { <. 1 , <. X , Y >. >. } ) | 
						
							| 123 |  | df-ov |  |-  ( X E Y ) = ( E ` <. X , Y >. ) | 
						
							| 124 | 123 | eqcomi |  |-  ( E ` <. X , Y >. ) = ( X E Y ) | 
						
							| 125 | 124 | sneqi |  |-  { ( E ` <. X , Y >. ) } = { ( X E Y ) } | 
						
							| 126 | 125 | xpeq2i |  |-  ( { 1 } X. { ( E ` <. X , Y >. ) } ) = ( { 1 } X. { ( X E Y ) } ) | 
						
							| 127 | 120 122 126 | 3eqtr3g |  |-  ( ph -> ( E o. { <. 1 , <. X , Y >. >. } ) = ( { 1 } X. { ( X E Y ) } ) ) | 
						
							| 128 | 127 | feq1d |  |-  ( ph -> ( ( E o. { <. 1 , <. X , Y >. >. } ) : { 1 } --> ( RR* \ { -oo } ) <-> ( { 1 } X. { ( X E Y ) } ) : { 1 } --> ( RR* \ { -oo } ) ) ) | 
						
							| 129 | 118 128 | mpbird |  |-  ( ph -> ( E o. { <. 1 , <. X , Y >. >. } ) : { 1 } --> ( RR* \ { -oo } ) ) | 
						
							| 130 | 52 56 | mp1i |  |-  ( ph -> 0 e. ( RR* \ { -oo } ) ) | 
						
							| 131 | 60 | adantl |  |-  ( ( ph /\ x e. RR* ) -> ( ( 0 +e x ) = x /\ ( x +e 0 ) = x ) ) | 
						
							| 132 | 23 24 10 107 109 110 129 130 131 | gsumress |  |-  ( ph -> ( RR*s gsum ( E o. { <. 1 , <. X , Y >. >. } ) ) = ( W gsum ( E o. { <. 1 , <. X , Y >. >. } ) ) ) | 
						
							| 133 |  | fconstmpt |  |-  ( { 1 } X. { ( X E Y ) } ) = ( j e. { 1 } |-> ( X E Y ) ) | 
						
							| 134 | 127 133 | eqtrdi |  |-  ( ph -> ( E o. { <. 1 , <. X , Y >. >. } ) = ( j e. { 1 } |-> ( X E Y ) ) ) | 
						
							| 135 | 134 | oveq2d |  |-  ( ph -> ( W gsum ( E o. { <. 1 , <. X , Y >. >. } ) ) = ( W gsum ( j e. { 1 } |-> ( X E Y ) ) ) ) | 
						
							| 136 |  | cmnmnd |  |-  ( W e. CMnd -> W e. Mnd ) | 
						
							| 137 | 66 136 | mp1i |  |-  ( ph -> W e. Mnd ) | 
						
							| 138 | 84 | a1i |  |-  ( ph -> 1 e. NN ) | 
						
							| 139 |  | eqidd |  |-  ( j = 1 -> ( X E Y ) = ( X E Y ) ) | 
						
							| 140 | 64 139 | gsumsn |  |-  ( ( W e. Mnd /\ 1 e. NN /\ ( X E Y ) e. ( RR* \ { -oo } ) ) -> ( W gsum ( j e. { 1 } |-> ( X E Y ) ) ) = ( X E Y ) ) | 
						
							| 141 | 137 138 116 140 | syl3anc |  |-  ( ph -> ( W gsum ( j e. { 1 } |-> ( X E Y ) ) ) = ( X E Y ) ) | 
						
							| 142 | 132 135 141 | 3eqtrrd |  |-  ( ph -> ( X E Y ) = ( RR*s gsum ( E o. { <. 1 , <. X , Y >. >. } ) ) ) | 
						
							| 143 |  | fveq1 |  |-  ( g = { <. 1 , <. X , Y >. >. } -> ( g ` 1 ) = ( { <. 1 , <. X , Y >. >. } ` 1 ) ) | 
						
							| 144 | 85 86 | fvsn |  |-  ( { <. 1 , <. X , Y >. >. } ` 1 ) = <. X , Y >. | 
						
							| 145 | 143 144 | eqtrdi |  |-  ( g = { <. 1 , <. X , Y >. >. } -> ( g ` 1 ) = <. X , Y >. ) | 
						
							| 146 | 145 | fveq2d |  |-  ( g = { <. 1 , <. X , Y >. >. } -> ( 1st ` ( g ` 1 ) ) = ( 1st ` <. X , Y >. ) ) | 
						
							| 147 | 146 | fveqeq2d |  |-  ( g = { <. 1 , <. X , Y >. >. } -> ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) <-> ( F ` ( 1st ` <. X , Y >. ) ) = ( F ` X ) ) ) | 
						
							| 148 | 145 | fveq2d |  |-  ( g = { <. 1 , <. X , Y >. >. } -> ( 2nd ` ( g ` 1 ) ) = ( 2nd ` <. X , Y >. ) ) | 
						
							| 149 | 148 | fveqeq2d |  |-  ( g = { <. 1 , <. X , Y >. >. } -> ( ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) <-> ( F ` ( 2nd ` <. X , Y >. ) ) = ( F ` Y ) ) ) | 
						
							| 150 | 147 149 | anbi12d |  |-  ( g = { <. 1 , <. X , Y >. >. } -> ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) <-> ( ( F ` ( 1st ` <. X , Y >. ) ) = ( F ` X ) /\ ( F ` ( 2nd ` <. X , Y >. ) ) = ( F ` Y ) ) ) ) | 
						
							| 151 |  | coeq2 |  |-  ( g = { <. 1 , <. X , Y >. >. } -> ( E o. g ) = ( E o. { <. 1 , <. X , Y >. >. } ) ) | 
						
							| 152 | 151 | oveq2d |  |-  ( g = { <. 1 , <. X , Y >. >. } -> ( RR*s gsum ( E o. g ) ) = ( RR*s gsum ( E o. { <. 1 , <. X , Y >. >. } ) ) ) | 
						
							| 153 | 152 | eqeq2d |  |-  ( g = { <. 1 , <. X , Y >. >. } -> ( ( X E Y ) = ( RR*s gsum ( E o. g ) ) <-> ( X E Y ) = ( RR*s gsum ( E o. { <. 1 , <. X , Y >. >. } ) ) ) ) | 
						
							| 154 | 150 153 | anbi12d |  |-  ( g = { <. 1 , <. X , Y >. >. } -> ( ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) <-> ( ( ( F ` ( 1st ` <. X , Y >. ) ) = ( F ` X ) /\ ( F ` ( 2nd ` <. X , Y >. ) ) = ( F ` Y ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. { <. 1 , <. X , Y >. >. } ) ) ) ) ) | 
						
							| 155 | 154 | rspcev |  |-  ( ( { <. 1 , <. X , Y >. >. } e. ( ( V X. V ) ^m { 1 } ) /\ ( ( ( F ` ( 1st ` <. X , Y >. ) ) = ( F ` X ) /\ ( F ` ( 2nd ` <. X , Y >. ) ) = ( F ` Y ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. { <. 1 , <. X , Y >. >. } ) ) ) ) -> E. g e. ( ( V X. V ) ^m { 1 } ) ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) ) | 
						
							| 156 | 99 106 142 155 | syl12anc |  |-  ( ph -> E. g e. ( ( V X. V ) ^m { 1 } ) ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) ) | 
						
							| 157 |  | ovex |  |-  ( X E Y ) e. _V | 
						
							| 158 |  | eqid |  |-  ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) = ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) | 
						
							| 159 | 158 | elrnmpt |  |-  ( ( X E Y ) e. _V -> ( ( X E Y ) e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) <-> E. g e. S ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) ) | 
						
							| 160 | 157 159 | ax-mp |  |-  ( ( X E Y ) e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) <-> E. g e. S ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) | 
						
							| 161 | 11 | rexeqi |  |-  ( E. g e. S ( X E Y ) = ( RR*s gsum ( E o. g ) ) <-> E. g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( h ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) | 
						
							| 162 |  | fveq1 |  |-  ( h = g -> ( h ` 1 ) = ( g ` 1 ) ) | 
						
							| 163 | 162 | fveq2d |  |-  ( h = g -> ( 1st ` ( h ` 1 ) ) = ( 1st ` ( g ` 1 ) ) ) | 
						
							| 164 | 163 | fveqeq2d |  |-  ( h = g -> ( ( F ` ( 1st ` ( h ` 1 ) ) ) = ( F ` X ) <-> ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) ) ) | 
						
							| 165 |  | fveq1 |  |-  ( h = g -> ( h ` n ) = ( g ` n ) ) | 
						
							| 166 | 165 | fveq2d |  |-  ( h = g -> ( 2nd ` ( h ` n ) ) = ( 2nd ` ( g ` n ) ) ) | 
						
							| 167 | 166 | fveqeq2d |  |-  ( h = g -> ( ( F ` ( 2nd ` ( h ` n ) ) ) = ( F ` Y ) <-> ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) ) ) | 
						
							| 168 |  | fveq1 |  |-  ( h = g -> ( h ` i ) = ( g ` i ) ) | 
						
							| 169 | 168 | fveq2d |  |-  ( h = g -> ( 2nd ` ( h ` i ) ) = ( 2nd ` ( g ` i ) ) ) | 
						
							| 170 | 169 | fveq2d |  |-  ( h = g -> ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 2nd ` ( g ` i ) ) ) ) | 
						
							| 171 |  | fveq1 |  |-  ( h = g -> ( h ` ( i + 1 ) ) = ( g ` ( i + 1 ) ) ) | 
						
							| 172 | 171 | fveq2d |  |-  ( h = g -> ( 1st ` ( h ` ( i + 1 ) ) ) = ( 1st ` ( g ` ( i + 1 ) ) ) ) | 
						
							| 173 | 172 | fveq2d |  |-  ( h = g -> ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) | 
						
							| 174 | 170 173 | eqeq12d |  |-  ( h = g -> ( ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) <-> ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) ) | 
						
							| 175 | 174 | ralbidv |  |-  ( h = g -> ( A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) <-> A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) ) | 
						
							| 176 | 164 167 175 | 3anbi123d |  |-  ( h = g -> ( ( ( F ` ( 1st ` ( h ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( h ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) <-> ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) ) ) | 
						
							| 177 | 176 | rexrab |  |-  ( E. g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( h ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } ( X E Y ) = ( RR*s gsum ( E o. g ) ) <-> E. g e. ( ( V X. V ) ^m ( 1 ... n ) ) ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) ) | 
						
							| 178 | 161 177 | bitri |  |-  ( E. g e. S ( X E Y ) = ( RR*s gsum ( E o. g ) ) <-> E. g e. ( ( V X. V ) ^m ( 1 ... n ) ) ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) ) | 
						
							| 179 |  | oveq2 |  |-  ( n = 1 -> ( 1 ... n ) = ( 1 ... 1 ) ) | 
						
							| 180 |  | 1z |  |-  1 e. ZZ | 
						
							| 181 |  | fzsn |  |-  ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) | 
						
							| 182 | 180 181 | ax-mp |  |-  ( 1 ... 1 ) = { 1 } | 
						
							| 183 | 179 182 | eqtrdi |  |-  ( n = 1 -> ( 1 ... n ) = { 1 } ) | 
						
							| 184 | 183 | oveq2d |  |-  ( n = 1 -> ( ( V X. V ) ^m ( 1 ... n ) ) = ( ( V X. V ) ^m { 1 } ) ) | 
						
							| 185 |  | df-3an |  |-  ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) <-> ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) ) | 
						
							| 186 |  | ral0 |  |-  A. i e. (/) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) | 
						
							| 187 |  | oveq1 |  |-  ( n = 1 -> ( n - 1 ) = ( 1 - 1 ) ) | 
						
							| 188 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 189 | 187 188 | eqtrdi |  |-  ( n = 1 -> ( n - 1 ) = 0 ) | 
						
							| 190 | 189 | oveq2d |  |-  ( n = 1 -> ( 1 ... ( n - 1 ) ) = ( 1 ... 0 ) ) | 
						
							| 191 |  | fz10 |  |-  ( 1 ... 0 ) = (/) | 
						
							| 192 | 190 191 | eqtrdi |  |-  ( n = 1 -> ( 1 ... ( n - 1 ) ) = (/) ) | 
						
							| 193 | 192 | raleqdv |  |-  ( n = 1 -> ( A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) <-> A. i e. (/) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) ) | 
						
							| 194 | 186 193 | mpbiri |  |-  ( n = 1 -> A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) | 
						
							| 195 | 194 | biantrud |  |-  ( n = 1 -> ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) ) <-> ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) ) ) | 
						
							| 196 |  | 2fveq3 |  |-  ( n = 1 -> ( 2nd ` ( g ` n ) ) = ( 2nd ` ( g ` 1 ) ) ) | 
						
							| 197 | 196 | fveqeq2d |  |-  ( n = 1 -> ( ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) <-> ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) ) | 
						
							| 198 | 197 | anbi2d |  |-  ( n = 1 -> ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) ) <-> ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) ) ) | 
						
							| 199 | 195 198 | bitr3d |  |-  ( n = 1 -> ( ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) <-> ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) ) ) | 
						
							| 200 | 185 199 | bitrid |  |-  ( n = 1 -> ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) <-> ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) ) ) | 
						
							| 201 | 200 | anbi1d |  |-  ( n = 1 -> ( ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) <-> ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) ) ) | 
						
							| 202 | 184 201 | rexeqbidv |  |-  ( n = 1 -> ( E. g e. ( ( V X. V ) ^m ( 1 ... n ) ) ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) <-> E. g e. ( ( V X. V ) ^m { 1 } ) ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) ) ) | 
						
							| 203 | 178 202 | bitrid |  |-  ( n = 1 -> ( E. g e. S ( X E Y ) = ( RR*s gsum ( E o. g ) ) <-> E. g e. ( ( V X. V ) ^m { 1 } ) ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) ) ) | 
						
							| 204 | 160 203 | bitrid |  |-  ( n = 1 -> ( ( X E Y ) e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) <-> E. g e. ( ( V X. V ) ^m { 1 } ) ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) ) ) | 
						
							| 205 | 204 | rspcev |  |-  ( ( 1 e. NN /\ E. g e. ( ( V X. V ) ^m { 1 } ) ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) ) -> E. n e. NN ( X E Y ) e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) ) | 
						
							| 206 | 84 156 205 | sylancr |  |-  ( ph -> E. n e. NN ( X E Y ) e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) ) | 
						
							| 207 |  | eliun |  |-  ( ( X E Y ) e. U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) <-> E. n e. NN ( X E Y ) e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) ) | 
						
							| 208 | 206 207 | sylibr |  |-  ( ph -> ( X E Y ) e. U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) ) | 
						
							| 209 | 208 12 | eleqtrrdi |  |-  ( ph -> ( X E Y ) e. T ) | 
						
							| 210 |  | infxrlb |  |-  ( ( T C_ RR* /\ ( X E Y ) e. T ) -> inf ( T , RR* , < ) <_ ( X E Y ) ) | 
						
							| 211 | 79 209 210 | syl2anc |  |-  ( ph -> inf ( T , RR* , < ) <_ ( X E Y ) ) | 
						
							| 212 | 12 | eleq2i |  |-  ( p e. T <-> p e. U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) ) | 
						
							| 213 |  | eliun |  |-  ( p e. U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) <-> E. n e. NN p e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) ) | 
						
							| 214 | 212 213 | bitri |  |-  ( p e. T <-> E. n e. NN p e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) ) | 
						
							| 215 | 158 | elrnmpt |  |-  ( p e. _V -> ( p e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) <-> E. g e. S p = ( RR*s gsum ( E o. g ) ) ) ) | 
						
							| 216 | 215 | elv |  |-  ( p e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) <-> E. g e. S p = ( RR*s gsum ( E o. g ) ) ) | 
						
							| 217 | 176 11 | elrab2 |  |-  ( g e. S <-> ( g e. ( ( V X. V ) ^m ( 1 ... n ) ) /\ ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) ) ) | 
						
							| 218 | 217 | simprbi |  |-  ( g e. S -> ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) ) | 
						
							| 219 | 218 | adantl |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) ) | 
						
							| 220 | 219 | simp2d |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) ) | 
						
							| 221 | 3 | ad2antrr |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> F : V -1-1-onto-> B ) | 
						
							| 222 |  | f1of1 |  |-  ( F : V -1-1-onto-> B -> F : V -1-1-> B ) | 
						
							| 223 | 221 222 | syl |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> F : V -1-1-> B ) | 
						
							| 224 |  | simplr |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> n e. NN ) | 
						
							| 225 |  | elfz1end |  |-  ( n e. NN <-> n e. ( 1 ... n ) ) | 
						
							| 226 | 224 225 | sylib |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> n e. ( 1 ... n ) ) | 
						
							| 227 | 49 226 | ffvelcdmd |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( g ` n ) e. ( V X. V ) ) | 
						
							| 228 |  | xp2nd |  |-  ( ( g ` n ) e. ( V X. V ) -> ( 2nd ` ( g ` n ) ) e. V ) | 
						
							| 229 | 227 228 | syl |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( 2nd ` ( g ` n ) ) e. V ) | 
						
							| 230 | 9 | ad2antrr |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> Y e. V ) | 
						
							| 231 |  | f1fveq |  |-  ( ( F : V -1-1-> B /\ ( ( 2nd ` ( g ` n ) ) e. V /\ Y e. V ) ) -> ( ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) <-> ( 2nd ` ( g ` n ) ) = Y ) ) | 
						
							| 232 | 223 229 230 231 | syl12anc |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) <-> ( 2nd ` ( g ` n ) ) = Y ) ) | 
						
							| 233 | 220 232 | mpbid |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( 2nd ` ( g ` n ) ) = Y ) | 
						
							| 234 | 233 | oveq2d |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( X E ( 2nd ` ( g ` n ) ) ) = ( X E Y ) ) | 
						
							| 235 |  | eleq1 |  |-  ( m = 1 -> ( m e. ( 1 ... n ) <-> 1 e. ( 1 ... n ) ) ) | 
						
							| 236 |  | 2fveq3 |  |-  ( m = 1 -> ( 2nd ` ( g ` m ) ) = ( 2nd ` ( g ` 1 ) ) ) | 
						
							| 237 | 236 | oveq2d |  |-  ( m = 1 -> ( X E ( 2nd ` ( g ` m ) ) ) = ( X E ( 2nd ` ( g ` 1 ) ) ) ) | 
						
							| 238 |  | oveq2 |  |-  ( m = 1 -> ( 1 ... m ) = ( 1 ... 1 ) ) | 
						
							| 239 | 238 182 | eqtrdi |  |-  ( m = 1 -> ( 1 ... m ) = { 1 } ) | 
						
							| 240 | 239 | reseq2d |  |-  ( m = 1 -> ( ( E o. g ) |` ( 1 ... m ) ) = ( ( E o. g ) |` { 1 } ) ) | 
						
							| 241 | 240 | oveq2d |  |-  ( m = 1 -> ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) = ( W gsum ( ( E o. g ) |` { 1 } ) ) ) | 
						
							| 242 | 237 241 | breq12d |  |-  ( m = 1 -> ( ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) <-> ( X E ( 2nd ` ( g ` 1 ) ) ) <_ ( W gsum ( ( E o. g ) |` { 1 } ) ) ) ) | 
						
							| 243 | 235 242 | imbi12d |  |-  ( m = 1 -> ( ( m e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) ) <-> ( 1 e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` 1 ) ) ) <_ ( W gsum ( ( E o. g ) |` { 1 } ) ) ) ) ) | 
						
							| 244 | 243 | imbi2d |  |-  ( m = 1 -> ( ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( m e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) ) ) <-> ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( 1 e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` 1 ) ) ) <_ ( W gsum ( ( E o. g ) |` { 1 } ) ) ) ) ) ) | 
						
							| 245 |  | eleq1 |  |-  ( m = x -> ( m e. ( 1 ... n ) <-> x e. ( 1 ... n ) ) ) | 
						
							| 246 |  | 2fveq3 |  |-  ( m = x -> ( 2nd ` ( g ` m ) ) = ( 2nd ` ( g ` x ) ) ) | 
						
							| 247 | 246 | oveq2d |  |-  ( m = x -> ( X E ( 2nd ` ( g ` m ) ) ) = ( X E ( 2nd ` ( g ` x ) ) ) ) | 
						
							| 248 |  | oveq2 |  |-  ( m = x -> ( 1 ... m ) = ( 1 ... x ) ) | 
						
							| 249 | 248 | reseq2d |  |-  ( m = x -> ( ( E o. g ) |` ( 1 ... m ) ) = ( ( E o. g ) |` ( 1 ... x ) ) ) | 
						
							| 250 | 249 | oveq2d |  |-  ( m = x -> ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) = ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) ) | 
						
							| 251 | 247 250 | breq12d |  |-  ( m = x -> ( ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) <-> ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) ) ) | 
						
							| 252 | 245 251 | imbi12d |  |-  ( m = x -> ( ( m e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) ) <-> ( x e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) ) ) ) | 
						
							| 253 | 252 | imbi2d |  |-  ( m = x -> ( ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( m e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) ) ) <-> ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( x e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) ) ) ) ) | 
						
							| 254 |  | eleq1 |  |-  ( m = ( x + 1 ) -> ( m e. ( 1 ... n ) <-> ( x + 1 ) e. ( 1 ... n ) ) ) | 
						
							| 255 |  | 2fveq3 |  |-  ( m = ( x + 1 ) -> ( 2nd ` ( g ` m ) ) = ( 2nd ` ( g ` ( x + 1 ) ) ) ) | 
						
							| 256 | 255 | oveq2d |  |-  ( m = ( x + 1 ) -> ( X E ( 2nd ` ( g ` m ) ) ) = ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) ) | 
						
							| 257 |  | oveq2 |  |-  ( m = ( x + 1 ) -> ( 1 ... m ) = ( 1 ... ( x + 1 ) ) ) | 
						
							| 258 | 257 | reseq2d |  |-  ( m = ( x + 1 ) -> ( ( E o. g ) |` ( 1 ... m ) ) = ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) ) | 
						
							| 259 | 258 | oveq2d |  |-  ( m = ( x + 1 ) -> ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) = ( W gsum ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) ) ) | 
						
							| 260 | 256 259 | breq12d |  |-  ( m = ( x + 1 ) -> ( ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) <-> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) ) ) ) | 
						
							| 261 | 254 260 | imbi12d |  |-  ( m = ( x + 1 ) -> ( ( m e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) ) <-> ( ( x + 1 ) e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) ) ) ) ) | 
						
							| 262 | 261 | imbi2d |  |-  ( m = ( x + 1 ) -> ( ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( m e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) ) ) <-> ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( ( x + 1 ) e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) ) ) ) ) ) | 
						
							| 263 |  | eleq1 |  |-  ( m = n -> ( m e. ( 1 ... n ) <-> n e. ( 1 ... n ) ) ) | 
						
							| 264 |  | 2fveq3 |  |-  ( m = n -> ( 2nd ` ( g ` m ) ) = ( 2nd ` ( g ` n ) ) ) | 
						
							| 265 | 264 | oveq2d |  |-  ( m = n -> ( X E ( 2nd ` ( g ` m ) ) ) = ( X E ( 2nd ` ( g ` n ) ) ) ) | 
						
							| 266 |  | oveq2 |  |-  ( m = n -> ( 1 ... m ) = ( 1 ... n ) ) | 
						
							| 267 | 266 | reseq2d |  |-  ( m = n -> ( ( E o. g ) |` ( 1 ... m ) ) = ( ( E o. g ) |` ( 1 ... n ) ) ) | 
						
							| 268 | 267 | oveq2d |  |-  ( m = n -> ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) = ( W gsum ( ( E o. g ) |` ( 1 ... n ) ) ) ) | 
						
							| 269 | 265 268 | breq12d |  |-  ( m = n -> ( ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) <-> ( X E ( 2nd ` ( g ` n ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... n ) ) ) ) ) | 
						
							| 270 | 263 269 | imbi12d |  |-  ( m = n -> ( ( m e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) ) <-> ( n e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` n ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... n ) ) ) ) ) ) | 
						
							| 271 | 270 | imbi2d |  |-  ( m = n -> ( ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( m e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) ) ) <-> ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( n e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` n ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... n ) ) ) ) ) ) ) | 
						
							| 272 | 7 | ad2antrr |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> E e. ( *Met ` V ) ) | 
						
							| 273 | 8 | ad2antrr |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> X e. V ) | 
						
							| 274 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 275 | 224 274 | eleqtrdi |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> n e. ( ZZ>= ` 1 ) ) | 
						
							| 276 |  | eluzfz1 |  |-  ( n e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... n ) ) | 
						
							| 277 | 275 276 | syl |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> 1 e. ( 1 ... n ) ) | 
						
							| 278 | 49 277 | ffvelcdmd |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( g ` 1 ) e. ( V X. V ) ) | 
						
							| 279 |  | xp2nd |  |-  ( ( g ` 1 ) e. ( V X. V ) -> ( 2nd ` ( g ` 1 ) ) e. V ) | 
						
							| 280 | 278 279 | syl |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( 2nd ` ( g ` 1 ) ) e. V ) | 
						
							| 281 |  | xmetcl |  |-  ( ( E e. ( *Met ` V ) /\ X e. V /\ ( 2nd ` ( g ` 1 ) ) e. V ) -> ( X E ( 2nd ` ( g ` 1 ) ) ) e. RR* ) | 
						
							| 282 | 272 273 280 281 | syl3anc |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( X E ( 2nd ` ( g ` 1 ) ) ) e. RR* ) | 
						
							| 283 | 282 | xrleidd |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( X E ( 2nd ` ( g ` 1 ) ) ) <_ ( X E ( 2nd ` ( g ` 1 ) ) ) ) | 
						
							| 284 | 137 | ad2antrr |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> W e. Mnd ) | 
						
							| 285 | 84 | a1i |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> 1 e. NN ) | 
						
							| 286 | 44 278 | ffvelcdmd |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( E ` ( g ` 1 ) ) e. ( RR* \ { -oo } ) ) | 
						
							| 287 |  | 2fveq3 |  |-  ( j = 1 -> ( E ` ( g ` j ) ) = ( E ` ( g ` 1 ) ) ) | 
						
							| 288 | 64 287 | gsumsn |  |-  ( ( W e. Mnd /\ 1 e. NN /\ ( E ` ( g ` 1 ) ) e. ( RR* \ { -oo } ) ) -> ( W gsum ( j e. { 1 } |-> ( E ` ( g ` j ) ) ) ) = ( E ` ( g ` 1 ) ) ) | 
						
							| 289 | 284 285 286 288 | syl3anc |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( W gsum ( j e. { 1 } |-> ( E ` ( g ` j ) ) ) ) = ( E ` ( g ` 1 ) ) ) | 
						
							| 290 | 272 30 | syl |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> E : ( V X. V ) --> RR* ) | 
						
							| 291 |  | fcompt |  |-  ( ( E : ( V X. V ) --> RR* /\ g : ( 1 ... n ) --> ( V X. V ) ) -> ( E o. g ) = ( j e. ( 1 ... n ) |-> ( E ` ( g ` j ) ) ) ) | 
						
							| 292 | 290 49 291 | syl2anc |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( E o. g ) = ( j e. ( 1 ... n ) |-> ( E ` ( g ` j ) ) ) ) | 
						
							| 293 | 292 | reseq1d |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( ( E o. g ) |` { 1 } ) = ( ( j e. ( 1 ... n ) |-> ( E ` ( g ` j ) ) ) |` { 1 } ) ) | 
						
							| 294 | 277 | snssd |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> { 1 } C_ ( 1 ... n ) ) | 
						
							| 295 | 294 | resmptd |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( ( j e. ( 1 ... n ) |-> ( E ` ( g ` j ) ) ) |` { 1 } ) = ( j e. { 1 } |-> ( E ` ( g ` j ) ) ) ) | 
						
							| 296 | 293 295 | eqtrd |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( ( E o. g ) |` { 1 } ) = ( j e. { 1 } |-> ( E ` ( g ` j ) ) ) ) | 
						
							| 297 | 296 | oveq2d |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( W gsum ( ( E o. g ) |` { 1 } ) ) = ( W gsum ( j e. { 1 } |-> ( E ` ( g ` j ) ) ) ) ) | 
						
							| 298 |  | df-ov |  |-  ( X E ( 2nd ` ( g ` 1 ) ) ) = ( E ` <. X , ( 2nd ` ( g ` 1 ) ) >. ) | 
						
							| 299 |  | 1st2nd2 |  |-  ( ( g ` 1 ) e. ( V X. V ) -> ( g ` 1 ) = <. ( 1st ` ( g ` 1 ) ) , ( 2nd ` ( g ` 1 ) ) >. ) | 
						
							| 300 | 278 299 | syl |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( g ` 1 ) = <. ( 1st ` ( g ` 1 ) ) , ( 2nd ` ( g ` 1 ) ) >. ) | 
						
							| 301 | 219 | simp1d |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) ) | 
						
							| 302 |  | xp1st |  |-  ( ( g ` 1 ) e. ( V X. V ) -> ( 1st ` ( g ` 1 ) ) e. V ) | 
						
							| 303 | 278 302 | syl |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( 1st ` ( g ` 1 ) ) e. V ) | 
						
							| 304 |  | f1fveq |  |-  ( ( F : V -1-1-> B /\ ( ( 1st ` ( g ` 1 ) ) e. V /\ X e. V ) ) -> ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) <-> ( 1st ` ( g ` 1 ) ) = X ) ) | 
						
							| 305 | 223 303 273 304 | syl12anc |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) <-> ( 1st ` ( g ` 1 ) ) = X ) ) | 
						
							| 306 | 301 305 | mpbid |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( 1st ` ( g ` 1 ) ) = X ) | 
						
							| 307 | 306 | opeq1d |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> <. ( 1st ` ( g ` 1 ) ) , ( 2nd ` ( g ` 1 ) ) >. = <. X , ( 2nd ` ( g ` 1 ) ) >. ) | 
						
							| 308 | 300 307 | eqtr2d |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> <. X , ( 2nd ` ( g ` 1 ) ) >. = ( g ` 1 ) ) | 
						
							| 309 | 308 | fveq2d |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( E ` <. X , ( 2nd ` ( g ` 1 ) ) >. ) = ( E ` ( g ` 1 ) ) ) | 
						
							| 310 | 298 309 | eqtrid |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( X E ( 2nd ` ( g ` 1 ) ) ) = ( E ` ( g ` 1 ) ) ) | 
						
							| 311 | 289 297 310 | 3eqtr4d |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( W gsum ( ( E o. g ) |` { 1 } ) ) = ( X E ( 2nd ` ( g ` 1 ) ) ) ) | 
						
							| 312 | 283 311 | breqtrrd |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( X E ( 2nd ` ( g ` 1 ) ) ) <_ ( W gsum ( ( E o. g ) |` { 1 } ) ) ) | 
						
							| 313 | 312 | a1d |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( 1 e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` 1 ) ) ) <_ ( W gsum ( ( E o. g ) |` { 1 } ) ) ) ) | 
						
							| 314 |  | simprl |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> x e. NN ) | 
						
							| 315 | 314 274 | eleqtrdi |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> x e. ( ZZ>= ` 1 ) ) | 
						
							| 316 |  | simprr |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( x + 1 ) e. ( 1 ... n ) ) | 
						
							| 317 |  | peano2fzr |  |-  ( ( x e. ( ZZ>= ` 1 ) /\ ( x + 1 ) e. ( 1 ... n ) ) -> x e. ( 1 ... n ) ) | 
						
							| 318 | 315 316 317 | syl2anc |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> x e. ( 1 ... n ) ) | 
						
							| 319 | 318 | expr |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ x e. NN ) -> ( ( x + 1 ) e. ( 1 ... n ) -> x e. ( 1 ... n ) ) ) | 
						
							| 320 | 319 | imim1d |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ x e. NN ) -> ( ( x e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) ) -> ( ( x + 1 ) e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) ) ) ) | 
						
							| 321 | 272 | adantr |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> E e. ( *Met ` V ) ) | 
						
							| 322 | 273 | adantr |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> X e. V ) | 
						
							| 323 | 49 | adantr |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> g : ( 1 ... n ) --> ( V X. V ) ) | 
						
							| 324 | 323 318 | ffvelcdmd |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( g ` x ) e. ( V X. V ) ) | 
						
							| 325 |  | xp2nd |  |-  ( ( g ` x ) e. ( V X. V ) -> ( 2nd ` ( g ` x ) ) e. V ) | 
						
							| 326 | 324 325 | syl |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( 2nd ` ( g ` x ) ) e. V ) | 
						
							| 327 |  | xmetcl |  |-  ( ( E e. ( *Met ` V ) /\ X e. V /\ ( 2nd ` ( g ` x ) ) e. V ) -> ( X E ( 2nd ` ( g ` x ) ) ) e. RR* ) | 
						
							| 328 | 321 322 326 327 | syl3anc |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( X E ( 2nd ` ( g ` x ) ) ) e. RR* ) | 
						
							| 329 | 66 | a1i |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> W e. CMnd ) | 
						
							| 330 |  | fzfid |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( 1 ... x ) e. Fin ) | 
						
							| 331 | 51 | adantr |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( E o. g ) : ( 1 ... n ) --> ( RR* \ { -oo } ) ) | 
						
							| 332 |  | fzsuc |  |-  ( x e. ( ZZ>= ` 1 ) -> ( 1 ... ( x + 1 ) ) = ( ( 1 ... x ) u. { ( x + 1 ) } ) ) | 
						
							| 333 | 315 332 | syl |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( 1 ... ( x + 1 ) ) = ( ( 1 ... x ) u. { ( x + 1 ) } ) ) | 
						
							| 334 |  | elfzuz3 |  |-  ( ( x + 1 ) e. ( 1 ... n ) -> n e. ( ZZ>= ` ( x + 1 ) ) ) | 
						
							| 335 | 334 | ad2antll |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> n e. ( ZZ>= ` ( x + 1 ) ) ) | 
						
							| 336 |  | fzss2 |  |-  ( n e. ( ZZ>= ` ( x + 1 ) ) -> ( 1 ... ( x + 1 ) ) C_ ( 1 ... n ) ) | 
						
							| 337 | 335 336 | syl |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( 1 ... ( x + 1 ) ) C_ ( 1 ... n ) ) | 
						
							| 338 | 333 337 | eqsstrrd |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( 1 ... x ) u. { ( x + 1 ) } ) C_ ( 1 ... n ) ) | 
						
							| 339 | 338 | unssad |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( 1 ... x ) C_ ( 1 ... n ) ) | 
						
							| 340 | 331 339 | fssresd |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( E o. g ) |` ( 1 ... x ) ) : ( 1 ... x ) --> ( RR* \ { -oo } ) ) | 
						
							| 341 | 68 | a1i |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> 0 e. _V ) | 
						
							| 342 | 340 330 341 | fdmfifsupp |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( E o. g ) |` ( 1 ... x ) ) finSupp 0 ) | 
						
							| 343 | 64 65 329 330 340 342 | gsumcl |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) e. ( RR* \ { -oo } ) ) | 
						
							| 344 | 343 | eldifad |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) e. RR* ) | 
						
							| 345 | 321 30 | syl |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> E : ( V X. V ) --> RR* ) | 
						
							| 346 | 323 316 | ffvelcdmd |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( g ` ( x + 1 ) ) e. ( V X. V ) ) | 
						
							| 347 | 345 346 | ffvelcdmd |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( E ` ( g ` ( x + 1 ) ) ) e. RR* ) | 
						
							| 348 |  | xleadd1a |  |-  ( ( ( ( X E ( 2nd ` ( g ` x ) ) ) e. RR* /\ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) e. RR* /\ ( E ` ( g ` ( x + 1 ) ) ) e. RR* ) /\ ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) ) -> ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) | 
						
							| 349 | 348 | ex |  |-  ( ( ( X E ( 2nd ` ( g ` x ) ) ) e. RR* /\ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) e. RR* /\ ( E ` ( g ` ( x + 1 ) ) ) e. RR* ) -> ( ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) -> ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) ) | 
						
							| 350 | 328 344 347 349 | syl3anc |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) -> ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) ) | 
						
							| 351 |  | xp2nd |  |-  ( ( g ` ( x + 1 ) ) e. ( V X. V ) -> ( 2nd ` ( g ` ( x + 1 ) ) ) e. V ) | 
						
							| 352 | 346 351 | syl |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( 2nd ` ( g ` ( x + 1 ) ) ) e. V ) | 
						
							| 353 |  | xmettri |  |-  ( ( E e. ( *Met ` V ) /\ ( X e. V /\ ( 2nd ` ( g ` ( x + 1 ) ) ) e. V /\ ( 2nd ` ( g ` x ) ) e. V ) ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( ( 2nd ` ( g ` x ) ) E ( 2nd ` ( g ` ( x + 1 ) ) ) ) ) ) | 
						
							| 354 | 321 322 352 326 353 | syl13anc |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( ( 2nd ` ( g ` x ) ) E ( 2nd ` ( g ` ( x + 1 ) ) ) ) ) ) | 
						
							| 355 |  | 1st2nd2 |  |-  ( ( g ` ( x + 1 ) ) e. ( V X. V ) -> ( g ` ( x + 1 ) ) = <. ( 1st ` ( g ` ( x + 1 ) ) ) , ( 2nd ` ( g ` ( x + 1 ) ) ) >. ) | 
						
							| 356 | 346 355 | syl |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( g ` ( x + 1 ) ) = <. ( 1st ` ( g ` ( x + 1 ) ) ) , ( 2nd ` ( g ` ( x + 1 ) ) ) >. ) | 
						
							| 357 |  | 2fveq3 |  |-  ( i = x -> ( 2nd ` ( g ` i ) ) = ( 2nd ` ( g ` x ) ) ) | 
						
							| 358 | 357 | fveq2d |  |-  ( i = x -> ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 2nd ` ( g ` x ) ) ) ) | 
						
							| 359 |  | fvoveq1 |  |-  ( i = x -> ( g ` ( i + 1 ) ) = ( g ` ( x + 1 ) ) ) | 
						
							| 360 | 359 | fveq2d |  |-  ( i = x -> ( 1st ` ( g ` ( i + 1 ) ) ) = ( 1st ` ( g ` ( x + 1 ) ) ) ) | 
						
							| 361 | 360 | fveq2d |  |-  ( i = x -> ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) = ( F ` ( 1st ` ( g ` ( x + 1 ) ) ) ) ) | 
						
							| 362 | 358 361 | eqeq12d |  |-  ( i = x -> ( ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) <-> ( F ` ( 2nd ` ( g ` x ) ) ) = ( F ` ( 1st ` ( g ` ( x + 1 ) ) ) ) ) ) | 
						
							| 363 | 219 | simp3d |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) | 
						
							| 364 | 363 | adantr |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) | 
						
							| 365 |  | nnz |  |-  ( x e. NN -> x e. ZZ ) | 
						
							| 366 | 365 | ad2antrl |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> x e. ZZ ) | 
						
							| 367 |  | eluzp1m1 |  |-  ( ( x e. ZZ /\ n e. ( ZZ>= ` ( x + 1 ) ) ) -> ( n - 1 ) e. ( ZZ>= ` x ) ) | 
						
							| 368 | 366 335 367 | syl2anc |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( n - 1 ) e. ( ZZ>= ` x ) ) | 
						
							| 369 |  | elfzuzb |  |-  ( x e. ( 1 ... ( n - 1 ) ) <-> ( x e. ( ZZ>= ` 1 ) /\ ( n - 1 ) e. ( ZZ>= ` x ) ) ) | 
						
							| 370 | 315 368 369 | sylanbrc |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> x e. ( 1 ... ( n - 1 ) ) ) | 
						
							| 371 | 362 364 370 | rspcdva |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( F ` ( 2nd ` ( g ` x ) ) ) = ( F ` ( 1st ` ( g ` ( x + 1 ) ) ) ) ) | 
						
							| 372 | 223 | adantr |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> F : V -1-1-> B ) | 
						
							| 373 |  | xp1st |  |-  ( ( g ` ( x + 1 ) ) e. ( V X. V ) -> ( 1st ` ( g ` ( x + 1 ) ) ) e. V ) | 
						
							| 374 | 346 373 | syl |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( 1st ` ( g ` ( x + 1 ) ) ) e. V ) | 
						
							| 375 |  | f1fveq |  |-  ( ( F : V -1-1-> B /\ ( ( 2nd ` ( g ` x ) ) e. V /\ ( 1st ` ( g ` ( x + 1 ) ) ) e. V ) ) -> ( ( F ` ( 2nd ` ( g ` x ) ) ) = ( F ` ( 1st ` ( g ` ( x + 1 ) ) ) ) <-> ( 2nd ` ( g ` x ) ) = ( 1st ` ( g ` ( x + 1 ) ) ) ) ) | 
						
							| 376 | 372 326 374 375 | syl12anc |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( F ` ( 2nd ` ( g ` x ) ) ) = ( F ` ( 1st ` ( g ` ( x + 1 ) ) ) ) <-> ( 2nd ` ( g ` x ) ) = ( 1st ` ( g ` ( x + 1 ) ) ) ) ) | 
						
							| 377 | 371 376 | mpbid |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( 2nd ` ( g ` x ) ) = ( 1st ` ( g ` ( x + 1 ) ) ) ) | 
						
							| 378 | 377 | opeq1d |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> <. ( 2nd ` ( g ` x ) ) , ( 2nd ` ( g ` ( x + 1 ) ) ) >. = <. ( 1st ` ( g ` ( x + 1 ) ) ) , ( 2nd ` ( g ` ( x + 1 ) ) ) >. ) | 
						
							| 379 | 356 378 | eqtr4d |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( g ` ( x + 1 ) ) = <. ( 2nd ` ( g ` x ) ) , ( 2nd ` ( g ` ( x + 1 ) ) ) >. ) | 
						
							| 380 | 379 | fveq2d |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( E ` ( g ` ( x + 1 ) ) ) = ( E ` <. ( 2nd ` ( g ` x ) ) , ( 2nd ` ( g ` ( x + 1 ) ) ) >. ) ) | 
						
							| 381 |  | df-ov |  |-  ( ( 2nd ` ( g ` x ) ) E ( 2nd ` ( g ` ( x + 1 ) ) ) ) = ( E ` <. ( 2nd ` ( g ` x ) ) , ( 2nd ` ( g ` ( x + 1 ) ) ) >. ) | 
						
							| 382 | 380 381 | eqtr4di |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( E ` ( g ` ( x + 1 ) ) ) = ( ( 2nd ` ( g ` x ) ) E ( 2nd ` ( g ` ( x + 1 ) ) ) ) ) | 
						
							| 383 | 382 | oveq2d |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) = ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( ( 2nd ` ( g ` x ) ) E ( 2nd ` ( g ` ( x + 1 ) ) ) ) ) ) | 
						
							| 384 | 354 383 | breqtrrd |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) | 
						
							| 385 |  | xmetcl |  |-  ( ( E e. ( *Met ` V ) /\ X e. V /\ ( 2nd ` ( g ` ( x + 1 ) ) ) e. V ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) e. RR* ) | 
						
							| 386 | 321 322 352 385 | syl3anc |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) e. RR* ) | 
						
							| 387 | 328 347 | xaddcld |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) e. RR* ) | 
						
							| 388 | 344 347 | xaddcld |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) e. RR* ) | 
						
							| 389 |  | xrletr |  |-  ( ( ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) e. RR* /\ ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) e. RR* /\ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) e. RR* ) -> ( ( ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) /\ ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) ) | 
						
							| 390 | 386 387 388 389 | syl3anc |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) /\ ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) ) | 
						
							| 391 | 384 390 | mpand |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) ) | 
						
							| 392 | 350 391 | syld |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) ) | 
						
							| 393 |  | xrex |  |-  RR* e. _V | 
						
							| 394 | 393 | difexi |  |-  ( RR* \ { -oo } ) e. _V | 
						
							| 395 | 10 24 | ressplusg |  |-  ( ( RR* \ { -oo } ) e. _V -> +e = ( +g ` W ) ) | 
						
							| 396 | 394 395 | ax-mp |  |-  +e = ( +g ` W ) | 
						
							| 397 | 44 | ad2antrr |  |-  ( ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) /\ j e. ( 1 ... x ) ) -> E : ( V X. V ) --> ( RR* \ { -oo } ) ) | 
						
							| 398 |  | fzelp1 |  |-  ( j e. ( 1 ... x ) -> j e. ( 1 ... ( x + 1 ) ) ) | 
						
							| 399 | 49 | ad2antrr |  |-  ( ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) /\ j e. ( 1 ... ( x + 1 ) ) ) -> g : ( 1 ... n ) --> ( V X. V ) ) | 
						
							| 400 | 337 | sselda |  |-  ( ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) /\ j e. ( 1 ... ( x + 1 ) ) ) -> j e. ( 1 ... n ) ) | 
						
							| 401 | 399 400 | ffvelcdmd |  |-  ( ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) /\ j e. ( 1 ... ( x + 1 ) ) ) -> ( g ` j ) e. ( V X. V ) ) | 
						
							| 402 | 398 401 | sylan2 |  |-  ( ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) /\ j e. ( 1 ... x ) ) -> ( g ` j ) e. ( V X. V ) ) | 
						
							| 403 | 397 402 | ffvelcdmd |  |-  ( ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) /\ j e. ( 1 ... x ) ) -> ( E ` ( g ` j ) ) e. ( RR* \ { -oo } ) ) | 
						
							| 404 |  | fzp1disj |  |-  ( ( 1 ... x ) i^i { ( x + 1 ) } ) = (/) | 
						
							| 405 | 404 | a1i |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( 1 ... x ) i^i { ( x + 1 ) } ) = (/) ) | 
						
							| 406 |  | disjsn |  |-  ( ( ( 1 ... x ) i^i { ( x + 1 ) } ) = (/) <-> -. ( x + 1 ) e. ( 1 ... x ) ) | 
						
							| 407 | 405 406 | sylib |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> -. ( x + 1 ) e. ( 1 ... x ) ) | 
						
							| 408 | 44 | adantr |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> E : ( V X. V ) --> ( RR* \ { -oo } ) ) | 
						
							| 409 | 408 346 | ffvelcdmd |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( E ` ( g ` ( x + 1 ) ) ) e. ( RR* \ { -oo } ) ) | 
						
							| 410 |  | 2fveq3 |  |-  ( j = ( x + 1 ) -> ( E ` ( g ` j ) ) = ( E ` ( g ` ( x + 1 ) ) ) ) | 
						
							| 411 | 64 396 329 330 403 316 407 409 410 | gsumunsn |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( W gsum ( j e. ( ( 1 ... x ) u. { ( x + 1 ) } ) |-> ( E ` ( g ` j ) ) ) ) = ( ( W gsum ( j e. ( 1 ... x ) |-> ( E ` ( g ` j ) ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) | 
						
							| 412 | 292 | adantr |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( E o. g ) = ( j e. ( 1 ... n ) |-> ( E ` ( g ` j ) ) ) ) | 
						
							| 413 | 412 333 | reseq12d |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) = ( ( j e. ( 1 ... n ) |-> ( E ` ( g ` j ) ) ) |` ( ( 1 ... x ) u. { ( x + 1 ) } ) ) ) | 
						
							| 414 | 338 | resmptd |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( j e. ( 1 ... n ) |-> ( E ` ( g ` j ) ) ) |` ( ( 1 ... x ) u. { ( x + 1 ) } ) ) = ( j e. ( ( 1 ... x ) u. { ( x + 1 ) } ) |-> ( E ` ( g ` j ) ) ) ) | 
						
							| 415 | 413 414 | eqtrd |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) = ( j e. ( ( 1 ... x ) u. { ( x + 1 ) } ) |-> ( E ` ( g ` j ) ) ) ) | 
						
							| 416 | 415 | oveq2d |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( W gsum ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) ) = ( W gsum ( j e. ( ( 1 ... x ) u. { ( x + 1 ) } ) |-> ( E ` ( g ` j ) ) ) ) ) | 
						
							| 417 | 412 | reseq1d |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( E o. g ) |` ( 1 ... x ) ) = ( ( j e. ( 1 ... n ) |-> ( E ` ( g ` j ) ) ) |` ( 1 ... x ) ) ) | 
						
							| 418 | 339 | resmptd |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( j e. ( 1 ... n ) |-> ( E ` ( g ` j ) ) ) |` ( 1 ... x ) ) = ( j e. ( 1 ... x ) |-> ( E ` ( g ` j ) ) ) ) | 
						
							| 419 | 417 418 | eqtrd |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( E o. g ) |` ( 1 ... x ) ) = ( j e. ( 1 ... x ) |-> ( E ` ( g ` j ) ) ) ) | 
						
							| 420 | 419 | oveq2d |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) = ( W gsum ( j e. ( 1 ... x ) |-> ( E ` ( g ` j ) ) ) ) ) | 
						
							| 421 | 420 | oveq1d |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) = ( ( W gsum ( j e. ( 1 ... x ) |-> ( E ` ( g ` j ) ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) | 
						
							| 422 | 411 416 421 | 3eqtr4d |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( W gsum ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) ) = ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) | 
						
							| 423 | 422 | breq2d |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) ) <-> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) ) | 
						
							| 424 | 392 423 | sylibrd |  |-  ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) ) ) ) | 
						
							| 425 | 320 424 | animpimp2impd |  |-  ( x e. NN -> ( ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( x e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) ) ) -> ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( ( x + 1 ) e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) ) ) ) ) ) | 
						
							| 426 | 244 253 262 271 313 425 | nnind |  |-  ( n e. NN -> ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( n e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` n ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... n ) ) ) ) ) ) | 
						
							| 427 | 224 426 | mpcom |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( n e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` n ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... n ) ) ) ) ) | 
						
							| 428 | 226 427 | mpd |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( X E ( 2nd ` ( g ` n ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... n ) ) ) ) | 
						
							| 429 | 234 428 | eqbrtrrd |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( X E Y ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... n ) ) ) ) | 
						
							| 430 |  | ffn |  |-  ( ( E o. g ) : ( 1 ... n ) --> ( RR* \ { -oo } ) -> ( E o. g ) Fn ( 1 ... n ) ) | 
						
							| 431 |  | fnresdm |  |-  ( ( E o. g ) Fn ( 1 ... n ) -> ( ( E o. g ) |` ( 1 ... n ) ) = ( E o. g ) ) | 
						
							| 432 | 51 430 431 | 3syl |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( ( E o. g ) |` ( 1 ... n ) ) = ( E o. g ) ) | 
						
							| 433 | 432 | oveq2d |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( W gsum ( ( E o. g ) |` ( 1 ... n ) ) ) = ( W gsum ( E o. g ) ) ) | 
						
							| 434 | 62 433 | eqtr4d |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( RR*s gsum ( E o. g ) ) = ( W gsum ( ( E o. g ) |` ( 1 ... n ) ) ) ) | 
						
							| 435 | 429 434 | breqtrrd |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( X E Y ) <_ ( RR*s gsum ( E o. g ) ) ) | 
						
							| 436 |  | breq2 |  |-  ( p = ( RR*s gsum ( E o. g ) ) -> ( ( X E Y ) <_ p <-> ( X E Y ) <_ ( RR*s gsum ( E o. g ) ) ) ) | 
						
							| 437 | 435 436 | syl5ibrcom |  |-  ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( p = ( RR*s gsum ( E o. g ) ) -> ( X E Y ) <_ p ) ) | 
						
							| 438 | 437 | rexlimdva |  |-  ( ( ph /\ n e. NN ) -> ( E. g e. S p = ( RR*s gsum ( E o. g ) ) -> ( X E Y ) <_ p ) ) | 
						
							| 439 | 216 438 | biimtrid |  |-  ( ( ph /\ n e. NN ) -> ( p e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) -> ( X E Y ) <_ p ) ) | 
						
							| 440 | 439 | rexlimdva |  |-  ( ph -> ( E. n e. NN p e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) -> ( X E Y ) <_ p ) ) | 
						
							| 441 | 214 440 | biimtrid |  |-  ( ph -> ( p e. T -> ( X E Y ) <_ p ) ) | 
						
							| 442 | 441 | ralrimiv |  |-  ( ph -> A. p e. T ( X E Y ) <_ p ) | 
						
							| 443 |  | infxrgelb |  |-  ( ( T C_ RR* /\ ( X E Y ) e. RR* ) -> ( ( X E Y ) <_ inf ( T , RR* , < ) <-> A. p e. T ( X E Y ) <_ p ) ) | 
						
							| 444 | 79 83 443 | syl2anc |  |-  ( ph -> ( ( X E Y ) <_ inf ( T , RR* , < ) <-> A. p e. T ( X E Y ) <_ p ) ) | 
						
							| 445 | 442 444 | mpbird |  |-  ( ph -> ( X E Y ) <_ inf ( T , RR* , < ) ) | 
						
							| 446 | 81 83 211 445 | xrletrid |  |-  ( ph -> inf ( T , RR* , < ) = ( X E Y ) ) | 
						
							| 447 | 22 446 | eqtrd |  |-  ( ph -> ( ( F ` X ) D ( F ` Y ) ) = ( X E Y ) ) |