| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imasbas.u |  |-  ( ph -> U = ( F "s R ) ) | 
						
							| 2 |  | imasbas.v |  |-  ( ph -> V = ( Base ` R ) ) | 
						
							| 3 |  | imasbas.f |  |-  ( ph -> F : V -onto-> B ) | 
						
							| 4 |  | imasbas.r |  |-  ( ph -> R e. Z ) | 
						
							| 5 |  | imasds.e |  |-  E = ( dist ` R ) | 
						
							| 6 |  | imasds.d |  |-  D = ( dist ` U ) | 
						
							| 7 |  | imasdsval.x |  |-  ( ph -> X e. B ) | 
						
							| 8 |  | imasdsval.y |  |-  ( ph -> Y e. B ) | 
						
							| 9 |  | imasdsval.s |  |-  S = { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = X /\ ( F ` ( 2nd ` ( h ` n ) ) ) = Y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } | 
						
							| 10 | 1 2 3 4 5 6 | imasds |  |-  ( ph -> D = ( x e. B , y e. B |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) ) ) | 
						
							| 11 |  | simplrl |  |-  ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ n e. NN ) -> x = X ) | 
						
							| 12 | 11 | eqeq2d |  |-  ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ n e. NN ) -> ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x <-> ( F ` ( 1st ` ( h ` 1 ) ) ) = X ) ) | 
						
							| 13 |  | simplrr |  |-  ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ n e. NN ) -> y = Y ) | 
						
							| 14 | 13 | eqeq2d |  |-  ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ n e. NN ) -> ( ( F ` ( 2nd ` ( h ` n ) ) ) = y <-> ( F ` ( 2nd ` ( h ` n ) ) ) = Y ) ) | 
						
							| 15 | 12 14 | 3anbi12d |  |-  ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ n e. NN ) -> ( ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) <-> ( ( F ` ( 1st ` ( h ` 1 ) ) ) = X /\ ( F ` ( 2nd ` ( h ` n ) ) ) = Y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) ) ) | 
						
							| 16 | 15 | rabbidv |  |-  ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ n e. NN ) -> { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } = { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = X /\ ( F ` ( 2nd ` ( h ` n ) ) ) = Y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } ) | 
						
							| 17 | 16 9 | eqtr4di |  |-  ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ n e. NN ) -> { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } = S ) | 
						
							| 18 | 17 | mpteq1d |  |-  ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ n e. NN ) -> ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) = ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) ) | 
						
							| 19 | 18 | rneqd |  |-  ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ n e. NN ) -> ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) = ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) ) | 
						
							| 20 | 19 | iuneq2dv |  |-  ( ( ph /\ ( x = X /\ y = Y ) ) -> U_ n e. NN ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) = U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) ) | 
						
							| 21 | 20 | infeq1d |  |-  ( ( ph /\ ( x = X /\ y = Y ) ) -> inf ( U_ n e. NN ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) = inf ( U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) ) | 
						
							| 22 |  | xrltso |  |-  < Or RR* | 
						
							| 23 | 22 | infex |  |-  inf ( U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) e. _V | 
						
							| 24 | 23 | a1i |  |-  ( ph -> inf ( U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) e. _V ) | 
						
							| 25 | 10 21 7 8 24 | ovmpod |  |-  ( ph -> ( X D Y ) = inf ( U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) ) |