| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imasbas.u |  |-  ( ph -> U = ( F "s R ) ) | 
						
							| 2 |  | imasbas.v |  |-  ( ph -> V = ( Base ` R ) ) | 
						
							| 3 |  | imasbas.f |  |-  ( ph -> F : V -onto-> B ) | 
						
							| 4 |  | imasbas.r |  |-  ( ph -> R e. Z ) | 
						
							| 5 |  | imasds.e |  |-  E = ( dist ` R ) | 
						
							| 6 |  | imasds.d |  |-  D = ( dist ` U ) | 
						
							| 7 |  | imasdsval.x |  |-  ( ph -> X e. B ) | 
						
							| 8 |  | imasdsval.y |  |-  ( ph -> Y e. B ) | 
						
							| 9 |  | imasdsval.s |  |-  S = { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = X /\ ( F ` ( 2nd ` ( h ` n ) ) ) = Y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } | 
						
							| 10 |  | imasds.u |  |-  T = ( E |` ( V X. V ) ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 9 | imasdsval |  |-  ( ph -> ( X D Y ) = inf ( U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) ) | 
						
							| 12 | 10 | coeq1i |  |-  ( T o. g ) = ( ( E |` ( V X. V ) ) o. g ) | 
						
							| 13 | 9 | ssrab3 |  |-  S C_ ( ( V X. V ) ^m ( 1 ... n ) ) | 
						
							| 14 | 13 | sseli |  |-  ( g e. S -> g e. ( ( V X. V ) ^m ( 1 ... n ) ) ) | 
						
							| 15 |  | elmapi |  |-  ( g e. ( ( V X. V ) ^m ( 1 ... n ) ) -> g : ( 1 ... n ) --> ( V X. V ) ) | 
						
							| 16 |  | frn |  |-  ( g : ( 1 ... n ) --> ( V X. V ) -> ran g C_ ( V X. V ) ) | 
						
							| 17 |  | cores |  |-  ( ran g C_ ( V X. V ) -> ( ( E |` ( V X. V ) ) o. g ) = ( E o. g ) ) | 
						
							| 18 | 14 15 16 17 | 4syl |  |-  ( g e. S -> ( ( E |` ( V X. V ) ) o. g ) = ( E o. g ) ) | 
						
							| 19 | 12 18 | eqtrid |  |-  ( g e. S -> ( T o. g ) = ( E o. g ) ) | 
						
							| 20 | 19 | oveq2d |  |-  ( g e. S -> ( RR*s gsum ( T o. g ) ) = ( RR*s gsum ( E o. g ) ) ) | 
						
							| 21 | 20 | mpteq2ia |  |-  ( g e. S |-> ( RR*s gsum ( T o. g ) ) ) = ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) | 
						
							| 22 | 21 | rneqi |  |-  ran ( g e. S |-> ( RR*s gsum ( T o. g ) ) ) = ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) | 
						
							| 23 | 22 | a1i |  |-  ( n e. NN -> ran ( g e. S |-> ( RR*s gsum ( T o. g ) ) ) = ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) ) | 
						
							| 24 | 23 | iuneq2i |  |-  U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( T o. g ) ) ) = U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) | 
						
							| 25 | 24 | infeq1i |  |-  inf ( U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( T o. g ) ) ) , RR* , < ) = inf ( U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) | 
						
							| 26 | 11 25 | eqtr4di |  |-  ( ph -> ( X D Y ) = inf ( U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( T o. g ) ) ) , RR* , < ) ) |