| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imasf1obl.u |  |-  ( ph -> U = ( F "s R ) ) | 
						
							| 2 |  | imasf1obl.v |  |-  ( ph -> V = ( Base ` R ) ) | 
						
							| 3 |  | imasf1obl.f |  |-  ( ph -> F : V -1-1-onto-> B ) | 
						
							| 4 |  | imasf1obl.r |  |-  ( ph -> R e. Z ) | 
						
							| 5 |  | imasf1obl.e |  |-  E = ( ( dist ` R ) |` ( V X. V ) ) | 
						
							| 6 |  | imasf1obl.d |  |-  D = ( dist ` U ) | 
						
							| 7 |  | imasf1obl.m |  |-  ( ph -> E e. ( *Met ` V ) ) | 
						
							| 8 |  | imasf1obl.x |  |-  ( ph -> P e. V ) | 
						
							| 9 |  | imasf1obl.s |  |-  ( ph -> S e. RR* ) | 
						
							| 10 |  | f1ocnvfv2 |  |-  ( ( F : V -1-1-onto-> B /\ x e. B ) -> ( F ` ( `' F ` x ) ) = x ) | 
						
							| 11 | 3 10 | sylan |  |-  ( ( ph /\ x e. B ) -> ( F ` ( `' F ` x ) ) = x ) | 
						
							| 12 | 11 | oveq2d |  |-  ( ( ph /\ x e. B ) -> ( ( F ` P ) D ( F ` ( `' F ` x ) ) ) = ( ( F ` P ) D x ) ) | 
						
							| 13 | 1 | adantr |  |-  ( ( ph /\ x e. B ) -> U = ( F "s R ) ) | 
						
							| 14 | 2 | adantr |  |-  ( ( ph /\ x e. B ) -> V = ( Base ` R ) ) | 
						
							| 15 | 3 | adantr |  |-  ( ( ph /\ x e. B ) -> F : V -1-1-onto-> B ) | 
						
							| 16 | 4 | adantr |  |-  ( ( ph /\ x e. B ) -> R e. Z ) | 
						
							| 17 | 7 | adantr |  |-  ( ( ph /\ x e. B ) -> E e. ( *Met ` V ) ) | 
						
							| 18 | 8 | adantr |  |-  ( ( ph /\ x e. B ) -> P e. V ) | 
						
							| 19 |  | f1ocnv |  |-  ( F : V -1-1-onto-> B -> `' F : B -1-1-onto-> V ) | 
						
							| 20 | 3 19 | syl |  |-  ( ph -> `' F : B -1-1-onto-> V ) | 
						
							| 21 |  | f1of |  |-  ( `' F : B -1-1-onto-> V -> `' F : B --> V ) | 
						
							| 22 | 20 21 | syl |  |-  ( ph -> `' F : B --> V ) | 
						
							| 23 | 22 | ffvelcdmda |  |-  ( ( ph /\ x e. B ) -> ( `' F ` x ) e. V ) | 
						
							| 24 | 13 14 15 16 5 6 17 18 23 | imasdsf1o |  |-  ( ( ph /\ x e. B ) -> ( ( F ` P ) D ( F ` ( `' F ` x ) ) ) = ( P E ( `' F ` x ) ) ) | 
						
							| 25 | 12 24 | eqtr3d |  |-  ( ( ph /\ x e. B ) -> ( ( F ` P ) D x ) = ( P E ( `' F ` x ) ) ) | 
						
							| 26 | 25 | breq1d |  |-  ( ( ph /\ x e. B ) -> ( ( ( F ` P ) D x ) < S <-> ( P E ( `' F ` x ) ) < S ) ) | 
						
							| 27 | 9 | adantr |  |-  ( ( ph /\ x e. B ) -> S e. RR* ) | 
						
							| 28 |  | elbl2 |  |-  ( ( ( E e. ( *Met ` V ) /\ S e. RR* ) /\ ( P e. V /\ ( `' F ` x ) e. V ) ) -> ( ( `' F ` x ) e. ( P ( ball ` E ) S ) <-> ( P E ( `' F ` x ) ) < S ) ) | 
						
							| 29 | 17 27 18 23 28 | syl22anc |  |-  ( ( ph /\ x e. B ) -> ( ( `' F ` x ) e. ( P ( ball ` E ) S ) <-> ( P E ( `' F ` x ) ) < S ) ) | 
						
							| 30 | 26 29 | bitr4d |  |-  ( ( ph /\ x e. B ) -> ( ( ( F ` P ) D x ) < S <-> ( `' F ` x ) e. ( P ( ball ` E ) S ) ) ) | 
						
							| 31 | 30 | pm5.32da |  |-  ( ph -> ( ( x e. B /\ ( ( F ` P ) D x ) < S ) <-> ( x e. B /\ ( `' F ` x ) e. ( P ( ball ` E ) S ) ) ) ) | 
						
							| 32 | 1 2 3 4 5 6 7 | imasf1oxmet |  |-  ( ph -> D e. ( *Met ` B ) ) | 
						
							| 33 |  | f1of |  |-  ( F : V -1-1-onto-> B -> F : V --> B ) | 
						
							| 34 | 3 33 | syl |  |-  ( ph -> F : V --> B ) | 
						
							| 35 | 34 8 | ffvelcdmd |  |-  ( ph -> ( F ` P ) e. B ) | 
						
							| 36 |  | elbl |  |-  ( ( D e. ( *Met ` B ) /\ ( F ` P ) e. B /\ S e. RR* ) -> ( x e. ( ( F ` P ) ( ball ` D ) S ) <-> ( x e. B /\ ( ( F ` P ) D x ) < S ) ) ) | 
						
							| 37 | 32 35 9 36 | syl3anc |  |-  ( ph -> ( x e. ( ( F ` P ) ( ball ` D ) S ) <-> ( x e. B /\ ( ( F ` P ) D x ) < S ) ) ) | 
						
							| 38 |  | f1ofn |  |-  ( `' F : B -1-1-onto-> V -> `' F Fn B ) | 
						
							| 39 |  | elpreima |  |-  ( `' F Fn B -> ( x e. ( `' `' F " ( P ( ball ` E ) S ) ) <-> ( x e. B /\ ( `' F ` x ) e. ( P ( ball ` E ) S ) ) ) ) | 
						
							| 40 | 20 38 39 | 3syl |  |-  ( ph -> ( x e. ( `' `' F " ( P ( ball ` E ) S ) ) <-> ( x e. B /\ ( `' F ` x ) e. ( P ( ball ` E ) S ) ) ) ) | 
						
							| 41 | 31 37 40 | 3bitr4d |  |-  ( ph -> ( x e. ( ( F ` P ) ( ball ` D ) S ) <-> x e. ( `' `' F " ( P ( ball ` E ) S ) ) ) ) | 
						
							| 42 | 41 | eqrdv |  |-  ( ph -> ( ( F ` P ) ( ball ` D ) S ) = ( `' `' F " ( P ( ball ` E ) S ) ) ) | 
						
							| 43 |  | imacnvcnv |  |-  ( `' `' F " ( P ( ball ` E ) S ) ) = ( F " ( P ( ball ` E ) S ) ) | 
						
							| 44 | 42 43 | eqtrdi |  |-  ( ph -> ( ( F ` P ) ( ball ` D ) S ) = ( F " ( P ( ball ` E ) S ) ) ) |