Step |
Hyp |
Ref |
Expression |
1 |
|
imasf1obl.u |
|- ( ph -> U = ( F "s R ) ) |
2 |
|
imasf1obl.v |
|- ( ph -> V = ( Base ` R ) ) |
3 |
|
imasf1obl.f |
|- ( ph -> F : V -1-1-onto-> B ) |
4 |
|
imasf1obl.r |
|- ( ph -> R e. Z ) |
5 |
|
imasf1obl.e |
|- E = ( ( dist ` R ) |` ( V X. V ) ) |
6 |
|
imasf1obl.d |
|- D = ( dist ` U ) |
7 |
|
imasf1obl.m |
|- ( ph -> E e. ( *Met ` V ) ) |
8 |
|
imasf1obl.x |
|- ( ph -> P e. V ) |
9 |
|
imasf1obl.s |
|- ( ph -> S e. RR* ) |
10 |
|
f1ocnvfv2 |
|- ( ( F : V -1-1-onto-> B /\ x e. B ) -> ( F ` ( `' F ` x ) ) = x ) |
11 |
3 10
|
sylan |
|- ( ( ph /\ x e. B ) -> ( F ` ( `' F ` x ) ) = x ) |
12 |
11
|
oveq2d |
|- ( ( ph /\ x e. B ) -> ( ( F ` P ) D ( F ` ( `' F ` x ) ) ) = ( ( F ` P ) D x ) ) |
13 |
1
|
adantr |
|- ( ( ph /\ x e. B ) -> U = ( F "s R ) ) |
14 |
2
|
adantr |
|- ( ( ph /\ x e. B ) -> V = ( Base ` R ) ) |
15 |
3
|
adantr |
|- ( ( ph /\ x e. B ) -> F : V -1-1-onto-> B ) |
16 |
4
|
adantr |
|- ( ( ph /\ x e. B ) -> R e. Z ) |
17 |
7
|
adantr |
|- ( ( ph /\ x e. B ) -> E e. ( *Met ` V ) ) |
18 |
8
|
adantr |
|- ( ( ph /\ x e. B ) -> P e. V ) |
19 |
|
f1ocnv |
|- ( F : V -1-1-onto-> B -> `' F : B -1-1-onto-> V ) |
20 |
3 19
|
syl |
|- ( ph -> `' F : B -1-1-onto-> V ) |
21 |
|
f1of |
|- ( `' F : B -1-1-onto-> V -> `' F : B --> V ) |
22 |
20 21
|
syl |
|- ( ph -> `' F : B --> V ) |
23 |
22
|
ffvelrnda |
|- ( ( ph /\ x e. B ) -> ( `' F ` x ) e. V ) |
24 |
13 14 15 16 5 6 17 18 23
|
imasdsf1o |
|- ( ( ph /\ x e. B ) -> ( ( F ` P ) D ( F ` ( `' F ` x ) ) ) = ( P E ( `' F ` x ) ) ) |
25 |
12 24
|
eqtr3d |
|- ( ( ph /\ x e. B ) -> ( ( F ` P ) D x ) = ( P E ( `' F ` x ) ) ) |
26 |
25
|
breq1d |
|- ( ( ph /\ x e. B ) -> ( ( ( F ` P ) D x ) < S <-> ( P E ( `' F ` x ) ) < S ) ) |
27 |
9
|
adantr |
|- ( ( ph /\ x e. B ) -> S e. RR* ) |
28 |
|
elbl2 |
|- ( ( ( E e. ( *Met ` V ) /\ S e. RR* ) /\ ( P e. V /\ ( `' F ` x ) e. V ) ) -> ( ( `' F ` x ) e. ( P ( ball ` E ) S ) <-> ( P E ( `' F ` x ) ) < S ) ) |
29 |
17 27 18 23 28
|
syl22anc |
|- ( ( ph /\ x e. B ) -> ( ( `' F ` x ) e. ( P ( ball ` E ) S ) <-> ( P E ( `' F ` x ) ) < S ) ) |
30 |
26 29
|
bitr4d |
|- ( ( ph /\ x e. B ) -> ( ( ( F ` P ) D x ) < S <-> ( `' F ` x ) e. ( P ( ball ` E ) S ) ) ) |
31 |
30
|
pm5.32da |
|- ( ph -> ( ( x e. B /\ ( ( F ` P ) D x ) < S ) <-> ( x e. B /\ ( `' F ` x ) e. ( P ( ball ` E ) S ) ) ) ) |
32 |
1 2 3 4 5 6 7
|
imasf1oxmet |
|- ( ph -> D e. ( *Met ` B ) ) |
33 |
|
f1of |
|- ( F : V -1-1-onto-> B -> F : V --> B ) |
34 |
3 33
|
syl |
|- ( ph -> F : V --> B ) |
35 |
34 8
|
ffvelrnd |
|- ( ph -> ( F ` P ) e. B ) |
36 |
|
elbl |
|- ( ( D e. ( *Met ` B ) /\ ( F ` P ) e. B /\ S e. RR* ) -> ( x e. ( ( F ` P ) ( ball ` D ) S ) <-> ( x e. B /\ ( ( F ` P ) D x ) < S ) ) ) |
37 |
32 35 9 36
|
syl3anc |
|- ( ph -> ( x e. ( ( F ` P ) ( ball ` D ) S ) <-> ( x e. B /\ ( ( F ` P ) D x ) < S ) ) ) |
38 |
|
f1ofn |
|- ( `' F : B -1-1-onto-> V -> `' F Fn B ) |
39 |
|
elpreima |
|- ( `' F Fn B -> ( x e. ( `' `' F " ( P ( ball ` E ) S ) ) <-> ( x e. B /\ ( `' F ` x ) e. ( P ( ball ` E ) S ) ) ) ) |
40 |
20 38 39
|
3syl |
|- ( ph -> ( x e. ( `' `' F " ( P ( ball ` E ) S ) ) <-> ( x e. B /\ ( `' F ` x ) e. ( P ( ball ` E ) S ) ) ) ) |
41 |
31 37 40
|
3bitr4d |
|- ( ph -> ( x e. ( ( F ` P ) ( ball ` D ) S ) <-> x e. ( `' `' F " ( P ( ball ` E ) S ) ) ) ) |
42 |
41
|
eqrdv |
|- ( ph -> ( ( F ` P ) ( ball ` D ) S ) = ( `' `' F " ( P ( ball ` E ) S ) ) ) |
43 |
|
imacnvcnv |
|- ( `' `' F " ( P ( ball ` E ) S ) ) = ( F " ( P ( ball ` E ) S ) ) |
44 |
42 43
|
eqtrdi |
|- ( ph -> ( ( F ` P ) ( ball ` D ) S ) = ( F " ( P ( ball ` E ) S ) ) ) |