Step |
Hyp |
Ref |
Expression |
1 |
|
imasf1obl.u |
|- ( ph -> U = ( F "s R ) ) |
2 |
|
imasf1obl.v |
|- ( ph -> V = ( Base ` R ) ) |
3 |
|
imasf1obl.f |
|- ( ph -> F : V -1-1-onto-> B ) |
4 |
|
imasf1oms.r |
|- ( ph -> R e. MetSp ) |
5 |
|
msxms |
|- ( R e. MetSp -> R e. *MetSp ) |
6 |
4 5
|
syl |
|- ( ph -> R e. *MetSp ) |
7 |
1 2 3 6
|
imasf1oxms |
|- ( ph -> U e. *MetSp ) |
8 |
|
eqid |
|- ( ( dist ` R ) |` ( V X. V ) ) = ( ( dist ` R ) |` ( V X. V ) ) |
9 |
|
eqid |
|- ( dist ` U ) = ( dist ` U ) |
10 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
11 |
|
eqid |
|- ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) = ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) |
12 |
10 11
|
msmet |
|- ( R e. MetSp -> ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) e. ( Met ` ( Base ` R ) ) ) |
13 |
4 12
|
syl |
|- ( ph -> ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) e. ( Met ` ( Base ` R ) ) ) |
14 |
2
|
sqxpeqd |
|- ( ph -> ( V X. V ) = ( ( Base ` R ) X. ( Base ` R ) ) ) |
15 |
14
|
reseq2d |
|- ( ph -> ( ( dist ` R ) |` ( V X. V ) ) = ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) |
16 |
2
|
fveq2d |
|- ( ph -> ( Met ` V ) = ( Met ` ( Base ` R ) ) ) |
17 |
13 15 16
|
3eltr4d |
|- ( ph -> ( ( dist ` R ) |` ( V X. V ) ) e. ( Met ` V ) ) |
18 |
1 2 3 4 8 9 17
|
imasf1omet |
|- ( ph -> ( dist ` U ) e. ( Met ` B ) ) |
19 |
|
f1ofo |
|- ( F : V -1-1-onto-> B -> F : V -onto-> B ) |
20 |
3 19
|
syl |
|- ( ph -> F : V -onto-> B ) |
21 |
1 2 20 4
|
imasbas |
|- ( ph -> B = ( Base ` U ) ) |
22 |
21
|
fveq2d |
|- ( ph -> ( Met ` B ) = ( Met ` ( Base ` U ) ) ) |
23 |
18 22
|
eleqtrd |
|- ( ph -> ( dist ` U ) e. ( Met ` ( Base ` U ) ) ) |
24 |
|
ssid |
|- ( Base ` U ) C_ ( Base ` U ) |
25 |
|
metres2 |
|- ( ( ( dist ` U ) e. ( Met ` ( Base ` U ) ) /\ ( Base ` U ) C_ ( Base ` U ) ) -> ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) e. ( Met ` ( Base ` U ) ) ) |
26 |
23 24 25
|
sylancl |
|- ( ph -> ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) e. ( Met ` ( Base ` U ) ) ) |
27 |
|
eqid |
|- ( TopOpen ` U ) = ( TopOpen ` U ) |
28 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
29 |
|
eqid |
|- ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) = ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) |
30 |
27 28 29
|
isms |
|- ( U e. MetSp <-> ( U e. *MetSp /\ ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) e. ( Met ` ( Base ` U ) ) ) ) |
31 |
7 26 30
|
sylanbrc |
|- ( ph -> U e. MetSp ) |