| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imasf1obl.u |  |-  ( ph -> U = ( F "s R ) ) | 
						
							| 2 |  | imasf1obl.v |  |-  ( ph -> V = ( Base ` R ) ) | 
						
							| 3 |  | imasf1obl.f |  |-  ( ph -> F : V -1-1-onto-> B ) | 
						
							| 4 |  | imasf1oms.r |  |-  ( ph -> R e. MetSp ) | 
						
							| 5 |  | msxms |  |-  ( R e. MetSp -> R e. *MetSp ) | 
						
							| 6 | 4 5 | syl |  |-  ( ph -> R e. *MetSp ) | 
						
							| 7 | 1 2 3 6 | imasf1oxms |  |-  ( ph -> U e. *MetSp ) | 
						
							| 8 |  | eqid |  |-  ( ( dist ` R ) |` ( V X. V ) ) = ( ( dist ` R ) |` ( V X. V ) ) | 
						
							| 9 |  | eqid |  |-  ( dist ` U ) = ( dist ` U ) | 
						
							| 10 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 11 |  | eqid |  |-  ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) = ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) | 
						
							| 12 | 10 11 | msmet |  |-  ( R e. MetSp -> ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) e. ( Met ` ( Base ` R ) ) ) | 
						
							| 13 | 4 12 | syl |  |-  ( ph -> ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) e. ( Met ` ( Base ` R ) ) ) | 
						
							| 14 | 2 | sqxpeqd |  |-  ( ph -> ( V X. V ) = ( ( Base ` R ) X. ( Base ` R ) ) ) | 
						
							| 15 | 14 | reseq2d |  |-  ( ph -> ( ( dist ` R ) |` ( V X. V ) ) = ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) | 
						
							| 16 | 2 | fveq2d |  |-  ( ph -> ( Met ` V ) = ( Met ` ( Base ` R ) ) ) | 
						
							| 17 | 13 15 16 | 3eltr4d |  |-  ( ph -> ( ( dist ` R ) |` ( V X. V ) ) e. ( Met ` V ) ) | 
						
							| 18 | 1 2 3 4 8 9 17 | imasf1omet |  |-  ( ph -> ( dist ` U ) e. ( Met ` B ) ) | 
						
							| 19 |  | f1ofo |  |-  ( F : V -1-1-onto-> B -> F : V -onto-> B ) | 
						
							| 20 | 3 19 | syl |  |-  ( ph -> F : V -onto-> B ) | 
						
							| 21 | 1 2 20 4 | imasbas |  |-  ( ph -> B = ( Base ` U ) ) | 
						
							| 22 | 21 | fveq2d |  |-  ( ph -> ( Met ` B ) = ( Met ` ( Base ` U ) ) ) | 
						
							| 23 | 18 22 | eleqtrd |  |-  ( ph -> ( dist ` U ) e. ( Met ` ( Base ` U ) ) ) | 
						
							| 24 |  | ssid |  |-  ( Base ` U ) C_ ( Base ` U ) | 
						
							| 25 |  | metres2 |  |-  ( ( ( dist ` U ) e. ( Met ` ( Base ` U ) ) /\ ( Base ` U ) C_ ( Base ` U ) ) -> ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) e. ( Met ` ( Base ` U ) ) ) | 
						
							| 26 | 23 24 25 | sylancl |  |-  ( ph -> ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) e. ( Met ` ( Base ` U ) ) ) | 
						
							| 27 |  | eqid |  |-  ( TopOpen ` U ) = ( TopOpen ` U ) | 
						
							| 28 |  | eqid |  |-  ( Base ` U ) = ( Base ` U ) | 
						
							| 29 |  | eqid |  |-  ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) = ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) | 
						
							| 30 | 27 28 29 | isms |  |-  ( U e. MetSp <-> ( U e. *MetSp /\ ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) e. ( Met ` ( Base ` U ) ) ) ) | 
						
							| 31 | 7 26 30 | sylanbrc |  |-  ( ph -> U e. MetSp ) |