Step |
Hyp |
Ref |
Expression |
1 |
|
imasf1obl.u |
|- ( ph -> U = ( F "s R ) ) |
2 |
|
imasf1obl.v |
|- ( ph -> V = ( Base ` R ) ) |
3 |
|
imasf1obl.f |
|- ( ph -> F : V -1-1-onto-> B ) |
4 |
|
imasf1oxms.r |
|- ( ph -> R e. *MetSp ) |
5 |
|
eqid |
|- ( ( dist ` R ) |` ( V X. V ) ) = ( ( dist ` R ) |` ( V X. V ) ) |
6 |
|
eqid |
|- ( dist ` U ) = ( dist ` U ) |
7 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
8 |
|
eqid |
|- ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) = ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) |
9 |
7 8
|
xmsxmet |
|- ( R e. *MetSp -> ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) e. ( *Met ` ( Base ` R ) ) ) |
10 |
4 9
|
syl |
|- ( ph -> ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) e. ( *Met ` ( Base ` R ) ) ) |
11 |
2
|
sqxpeqd |
|- ( ph -> ( V X. V ) = ( ( Base ` R ) X. ( Base ` R ) ) ) |
12 |
11
|
reseq2d |
|- ( ph -> ( ( dist ` R ) |` ( V X. V ) ) = ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) |
13 |
2
|
fveq2d |
|- ( ph -> ( *Met ` V ) = ( *Met ` ( Base ` R ) ) ) |
14 |
10 12 13
|
3eltr4d |
|- ( ph -> ( ( dist ` R ) |` ( V X. V ) ) e. ( *Met ` V ) ) |
15 |
1 2 3 4 5 6 14
|
imasf1oxmet |
|- ( ph -> ( dist ` U ) e. ( *Met ` B ) ) |
16 |
|
f1ofo |
|- ( F : V -1-1-onto-> B -> F : V -onto-> B ) |
17 |
3 16
|
syl |
|- ( ph -> F : V -onto-> B ) |
18 |
1 2 17 4
|
imasbas |
|- ( ph -> B = ( Base ` U ) ) |
19 |
18
|
fveq2d |
|- ( ph -> ( *Met ` B ) = ( *Met ` ( Base ` U ) ) ) |
20 |
15 19
|
eleqtrd |
|- ( ph -> ( dist ` U ) e. ( *Met ` ( Base ` U ) ) ) |
21 |
|
ssid |
|- ( Base ` U ) C_ ( Base ` U ) |
22 |
|
xmetres2 |
|- ( ( ( dist ` U ) e. ( *Met ` ( Base ` U ) ) /\ ( Base ` U ) C_ ( Base ` U ) ) -> ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) e. ( *Met ` ( Base ` U ) ) ) |
23 |
20 21 22
|
sylancl |
|- ( ph -> ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) e. ( *Met ` ( Base ` U ) ) ) |
24 |
|
eqid |
|- ( TopOpen ` R ) = ( TopOpen ` R ) |
25 |
|
eqid |
|- ( TopOpen ` U ) = ( TopOpen ` U ) |
26 |
1 2 17 4 24 25
|
imastopn |
|- ( ph -> ( TopOpen ` U ) = ( ( TopOpen ` R ) qTop F ) ) |
27 |
24 7 8
|
xmstopn |
|- ( R e. *MetSp -> ( TopOpen ` R ) = ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) ) |
28 |
4 27
|
syl |
|- ( ph -> ( TopOpen ` R ) = ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) ) |
29 |
12
|
fveq2d |
|- ( ph -> ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) = ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) ) |
30 |
28 29
|
eqtr4d |
|- ( ph -> ( TopOpen ` R ) = ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) ) |
31 |
30
|
oveq1d |
|- ( ph -> ( ( TopOpen ` R ) qTop F ) = ( ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) ) |
32 |
|
blbas |
|- ( ( ( dist ` R ) |` ( V X. V ) ) e. ( *Met ` V ) -> ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) e. TopBases ) |
33 |
14 32
|
syl |
|- ( ph -> ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) e. TopBases ) |
34 |
|
unirnbl |
|- ( ( ( dist ` R ) |` ( V X. V ) ) e. ( *Met ` V ) -> U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) = V ) |
35 |
|
f1oeq2 |
|- ( U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) = V -> ( F : U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) -1-1-onto-> B <-> F : V -1-1-onto-> B ) ) |
36 |
14 34 35
|
3syl |
|- ( ph -> ( F : U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) -1-1-onto-> B <-> F : V -1-1-onto-> B ) ) |
37 |
3 36
|
mpbird |
|- ( ph -> F : U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) -1-1-onto-> B ) |
38 |
|
eqid |
|- U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) = U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) |
39 |
38
|
tgqtop |
|- ( ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) e. TopBases /\ F : U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) -1-1-onto-> B ) -> ( ( topGen ` ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) ) qTop F ) = ( topGen ` ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) ) ) |
40 |
33 37 39
|
syl2anc |
|- ( ph -> ( ( topGen ` ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) ) qTop F ) = ( topGen ` ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) ) ) |
41 |
|
eqid |
|- ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) = ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) |
42 |
41
|
mopnval |
|- ( ( ( dist ` R ) |` ( V X. V ) ) e. ( *Met ` V ) -> ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) = ( topGen ` ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) ) ) |
43 |
14 42
|
syl |
|- ( ph -> ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) = ( topGen ` ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) ) ) |
44 |
43
|
oveq1d |
|- ( ph -> ( ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) = ( ( topGen ` ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) ) qTop F ) ) |
45 |
|
eqid |
|- ( MetOpen ` ( dist ` U ) ) = ( MetOpen ` ( dist ` U ) ) |
46 |
45
|
mopnval |
|- ( ( dist ` U ) e. ( *Met ` B ) -> ( MetOpen ` ( dist ` U ) ) = ( topGen ` ran ( ball ` ( dist ` U ) ) ) ) |
47 |
15 46
|
syl |
|- ( ph -> ( MetOpen ` ( dist ` U ) ) = ( topGen ` ran ( ball ` ( dist ` U ) ) ) ) |
48 |
|
xmetf |
|- ( ( dist ` U ) e. ( *Met ` ( Base ` U ) ) -> ( dist ` U ) : ( ( Base ` U ) X. ( Base ` U ) ) --> RR* ) |
49 |
20 48
|
syl |
|- ( ph -> ( dist ` U ) : ( ( Base ` U ) X. ( Base ` U ) ) --> RR* ) |
50 |
|
ffn |
|- ( ( dist ` U ) : ( ( Base ` U ) X. ( Base ` U ) ) --> RR* -> ( dist ` U ) Fn ( ( Base ` U ) X. ( Base ` U ) ) ) |
51 |
|
fnresdm |
|- ( ( dist ` U ) Fn ( ( Base ` U ) X. ( Base ` U ) ) -> ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) = ( dist ` U ) ) |
52 |
49 50 51
|
3syl |
|- ( ph -> ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) = ( dist ` U ) ) |
53 |
52
|
fveq2d |
|- ( ph -> ( MetOpen ` ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) ) = ( MetOpen ` ( dist ` U ) ) ) |
54 |
3
|
ad2antrr |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> F : V -1-1-onto-> B ) |
55 |
|
f1of1 |
|- ( F : V -1-1-onto-> B -> F : V -1-1-> B ) |
56 |
54 55
|
syl |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> F : V -1-1-> B ) |
57 |
|
cnvimass |
|- ( `' F " x ) C_ dom F |
58 |
|
f1odm |
|- ( F : V -1-1-onto-> B -> dom F = V ) |
59 |
54 58
|
syl |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> dom F = V ) |
60 |
57 59
|
sseqtrid |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( `' F " x ) C_ V ) |
61 |
14
|
ad2antrr |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( ( dist ` R ) |` ( V X. V ) ) e. ( *Met ` V ) ) |
62 |
|
simprl |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> y e. V ) |
63 |
|
simprr |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> r e. RR* ) |
64 |
|
blssm |
|- ( ( ( ( dist ` R ) |` ( V X. V ) ) e. ( *Met ` V ) /\ y e. V /\ r e. RR* ) -> ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) C_ V ) |
65 |
61 62 63 64
|
syl3anc |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) C_ V ) |
66 |
|
f1imaeq |
|- ( ( F : V -1-1-> B /\ ( ( `' F " x ) C_ V /\ ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) C_ V ) ) -> ( ( F " ( `' F " x ) ) = ( F " ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) <-> ( `' F " x ) = ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) ) |
67 |
56 60 65 66
|
syl12anc |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( ( F " ( `' F " x ) ) = ( F " ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) <-> ( `' F " x ) = ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) ) |
68 |
54 16
|
syl |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> F : V -onto-> B ) |
69 |
|
simplr |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> x C_ B ) |
70 |
|
foimacnv |
|- ( ( F : V -onto-> B /\ x C_ B ) -> ( F " ( `' F " x ) ) = x ) |
71 |
68 69 70
|
syl2anc |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( F " ( `' F " x ) ) = x ) |
72 |
1
|
ad2antrr |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> U = ( F "s R ) ) |
73 |
2
|
ad2antrr |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> V = ( Base ` R ) ) |
74 |
4
|
ad2antrr |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> R e. *MetSp ) |
75 |
72 73 54 74 5 6 61 62 63
|
imasf1obl |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) = ( F " ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) ) |
76 |
75
|
eqcomd |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( F " ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) |
77 |
71 76
|
eqeq12d |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( ( F " ( `' F " x ) ) = ( F " ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) <-> x = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) ) |
78 |
67 77
|
bitr3d |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( ( `' F " x ) = ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) <-> x = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) ) |
79 |
78
|
2rexbidva |
|- ( ( ph /\ x C_ B ) -> ( E. y e. V E. r e. RR* ( `' F " x ) = ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) <-> E. y e. V E. r e. RR* x = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) ) |
80 |
3
|
adantr |
|- ( ( ph /\ x C_ B ) -> F : V -1-1-onto-> B ) |
81 |
|
f1ofn |
|- ( F : V -1-1-onto-> B -> F Fn V ) |
82 |
|
oveq1 |
|- ( z = ( F ` y ) -> ( z ( ball ` ( dist ` U ) ) r ) = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) |
83 |
82
|
eqeq2d |
|- ( z = ( F ` y ) -> ( x = ( z ( ball ` ( dist ` U ) ) r ) <-> x = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) ) |
84 |
83
|
rexbidv |
|- ( z = ( F ` y ) -> ( E. r e. RR* x = ( z ( ball ` ( dist ` U ) ) r ) <-> E. r e. RR* x = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) ) |
85 |
84
|
rexrn |
|- ( F Fn V -> ( E. z e. ran F E. r e. RR* x = ( z ( ball ` ( dist ` U ) ) r ) <-> E. y e. V E. r e. RR* x = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) ) |
86 |
80 81 85
|
3syl |
|- ( ( ph /\ x C_ B ) -> ( E. z e. ran F E. r e. RR* x = ( z ( ball ` ( dist ` U ) ) r ) <-> E. y e. V E. r e. RR* x = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) ) |
87 |
|
forn |
|- ( F : V -onto-> B -> ran F = B ) |
88 |
80 16 87
|
3syl |
|- ( ( ph /\ x C_ B ) -> ran F = B ) |
89 |
88
|
rexeqdv |
|- ( ( ph /\ x C_ B ) -> ( E. z e. ran F E. r e. RR* x = ( z ( ball ` ( dist ` U ) ) r ) <-> E. z e. B E. r e. RR* x = ( z ( ball ` ( dist ` U ) ) r ) ) ) |
90 |
79 86 89
|
3bitr2d |
|- ( ( ph /\ x C_ B ) -> ( E. y e. V E. r e. RR* ( `' F " x ) = ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) <-> E. z e. B E. r e. RR* x = ( z ( ball ` ( dist ` U ) ) r ) ) ) |
91 |
14
|
adantr |
|- ( ( ph /\ x C_ B ) -> ( ( dist ` R ) |` ( V X. V ) ) e. ( *Met ` V ) ) |
92 |
|
blrn |
|- ( ( ( dist ` R ) |` ( V X. V ) ) e. ( *Met ` V ) -> ( ( `' F " x ) e. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) <-> E. y e. V E. r e. RR* ( `' F " x ) = ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) ) |
93 |
91 92
|
syl |
|- ( ( ph /\ x C_ B ) -> ( ( `' F " x ) e. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) <-> E. y e. V E. r e. RR* ( `' F " x ) = ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) ) |
94 |
15
|
adantr |
|- ( ( ph /\ x C_ B ) -> ( dist ` U ) e. ( *Met ` B ) ) |
95 |
|
blrn |
|- ( ( dist ` U ) e. ( *Met ` B ) -> ( x e. ran ( ball ` ( dist ` U ) ) <-> E. z e. B E. r e. RR* x = ( z ( ball ` ( dist ` U ) ) r ) ) ) |
96 |
94 95
|
syl |
|- ( ( ph /\ x C_ B ) -> ( x e. ran ( ball ` ( dist ` U ) ) <-> E. z e. B E. r e. RR* x = ( z ( ball ` ( dist ` U ) ) r ) ) ) |
97 |
90 93 96
|
3bitr4d |
|- ( ( ph /\ x C_ B ) -> ( ( `' F " x ) e. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) <-> x e. ran ( ball ` ( dist ` U ) ) ) ) |
98 |
97
|
pm5.32da |
|- ( ph -> ( ( x C_ B /\ ( `' F " x ) e. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) ) <-> ( x C_ B /\ x e. ran ( ball ` ( dist ` U ) ) ) ) ) |
99 |
|
f1ofo |
|- ( F : U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) -1-1-onto-> B -> F : U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) -onto-> B ) |
100 |
37 99
|
syl |
|- ( ph -> F : U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) -onto-> B ) |
101 |
38
|
elqtop2 |
|- ( ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) e. TopBases /\ F : U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) -onto-> B ) -> ( x e. ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) <-> ( x C_ B /\ ( `' F " x ) e. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) ) ) ) |
102 |
33 100 101
|
syl2anc |
|- ( ph -> ( x e. ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) <-> ( x C_ B /\ ( `' F " x ) e. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) ) ) ) |
103 |
|
blf |
|- ( ( dist ` U ) e. ( *Met ` B ) -> ( ball ` ( dist ` U ) ) : ( B X. RR* ) --> ~P B ) |
104 |
|
frn |
|- ( ( ball ` ( dist ` U ) ) : ( B X. RR* ) --> ~P B -> ran ( ball ` ( dist ` U ) ) C_ ~P B ) |
105 |
15 103 104
|
3syl |
|- ( ph -> ran ( ball ` ( dist ` U ) ) C_ ~P B ) |
106 |
105
|
sseld |
|- ( ph -> ( x e. ran ( ball ` ( dist ` U ) ) -> x e. ~P B ) ) |
107 |
|
elpwi |
|- ( x e. ~P B -> x C_ B ) |
108 |
106 107
|
syl6 |
|- ( ph -> ( x e. ran ( ball ` ( dist ` U ) ) -> x C_ B ) ) |
109 |
108
|
pm4.71rd |
|- ( ph -> ( x e. ran ( ball ` ( dist ` U ) ) <-> ( x C_ B /\ x e. ran ( ball ` ( dist ` U ) ) ) ) ) |
110 |
98 102 109
|
3bitr4d |
|- ( ph -> ( x e. ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) <-> x e. ran ( ball ` ( dist ` U ) ) ) ) |
111 |
110
|
eqrdv |
|- ( ph -> ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) = ran ( ball ` ( dist ` U ) ) ) |
112 |
111
|
fveq2d |
|- ( ph -> ( topGen ` ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) ) = ( topGen ` ran ( ball ` ( dist ` U ) ) ) ) |
113 |
47 53 112
|
3eqtr4d |
|- ( ph -> ( MetOpen ` ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) ) = ( topGen ` ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) ) ) |
114 |
40 44 113
|
3eqtr4d |
|- ( ph -> ( ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) = ( MetOpen ` ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) ) ) |
115 |
26 31 114
|
3eqtrd |
|- ( ph -> ( TopOpen ` U ) = ( MetOpen ` ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) ) ) |
116 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
117 |
|
eqid |
|- ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) = ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) |
118 |
25 116 117
|
isxms2 |
|- ( U e. *MetSp <-> ( ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) e. ( *Met ` ( Base ` U ) ) /\ ( TopOpen ` U ) = ( MetOpen ` ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) ) ) ) |
119 |
23 115 118
|
sylanbrc |
|- ( ph -> U e. *MetSp ) |