| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imasf1obl.u |  |-  ( ph -> U = ( F "s R ) ) | 
						
							| 2 |  | imasf1obl.v |  |-  ( ph -> V = ( Base ` R ) ) | 
						
							| 3 |  | imasf1obl.f |  |-  ( ph -> F : V -1-1-onto-> B ) | 
						
							| 4 |  | imasf1oxms.r |  |-  ( ph -> R e. *MetSp ) | 
						
							| 5 |  | eqid |  |-  ( ( dist ` R ) |` ( V X. V ) ) = ( ( dist ` R ) |` ( V X. V ) ) | 
						
							| 6 |  | eqid |  |-  ( dist ` U ) = ( dist ` U ) | 
						
							| 7 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 8 |  | eqid |  |-  ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) = ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) | 
						
							| 9 | 7 8 | xmsxmet |  |-  ( R e. *MetSp -> ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) e. ( *Met ` ( Base ` R ) ) ) | 
						
							| 10 | 4 9 | syl |  |-  ( ph -> ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) e. ( *Met ` ( Base ` R ) ) ) | 
						
							| 11 | 2 | sqxpeqd |  |-  ( ph -> ( V X. V ) = ( ( Base ` R ) X. ( Base ` R ) ) ) | 
						
							| 12 | 11 | reseq2d |  |-  ( ph -> ( ( dist ` R ) |` ( V X. V ) ) = ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) | 
						
							| 13 | 2 | fveq2d |  |-  ( ph -> ( *Met ` V ) = ( *Met ` ( Base ` R ) ) ) | 
						
							| 14 | 10 12 13 | 3eltr4d |  |-  ( ph -> ( ( dist ` R ) |` ( V X. V ) ) e. ( *Met ` V ) ) | 
						
							| 15 | 1 2 3 4 5 6 14 | imasf1oxmet |  |-  ( ph -> ( dist ` U ) e. ( *Met ` B ) ) | 
						
							| 16 |  | f1ofo |  |-  ( F : V -1-1-onto-> B -> F : V -onto-> B ) | 
						
							| 17 | 3 16 | syl |  |-  ( ph -> F : V -onto-> B ) | 
						
							| 18 | 1 2 17 4 | imasbas |  |-  ( ph -> B = ( Base ` U ) ) | 
						
							| 19 | 18 | fveq2d |  |-  ( ph -> ( *Met ` B ) = ( *Met ` ( Base ` U ) ) ) | 
						
							| 20 | 15 19 | eleqtrd |  |-  ( ph -> ( dist ` U ) e. ( *Met ` ( Base ` U ) ) ) | 
						
							| 21 |  | ssid |  |-  ( Base ` U ) C_ ( Base ` U ) | 
						
							| 22 |  | xmetres2 |  |-  ( ( ( dist ` U ) e. ( *Met ` ( Base ` U ) ) /\ ( Base ` U ) C_ ( Base ` U ) ) -> ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) e. ( *Met ` ( Base ` U ) ) ) | 
						
							| 23 | 20 21 22 | sylancl |  |-  ( ph -> ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) e. ( *Met ` ( Base ` U ) ) ) | 
						
							| 24 |  | eqid |  |-  ( TopOpen ` R ) = ( TopOpen ` R ) | 
						
							| 25 |  | eqid |  |-  ( TopOpen ` U ) = ( TopOpen ` U ) | 
						
							| 26 | 1 2 17 4 24 25 | imastopn |  |-  ( ph -> ( TopOpen ` U ) = ( ( TopOpen ` R ) qTop F ) ) | 
						
							| 27 | 24 7 8 | xmstopn |  |-  ( R e. *MetSp -> ( TopOpen ` R ) = ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) ) | 
						
							| 28 | 4 27 | syl |  |-  ( ph -> ( TopOpen ` R ) = ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) ) | 
						
							| 29 | 12 | fveq2d |  |-  ( ph -> ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) = ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) ) | 
						
							| 30 | 28 29 | eqtr4d |  |-  ( ph -> ( TopOpen ` R ) = ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) ) | 
						
							| 31 | 30 | oveq1d |  |-  ( ph -> ( ( TopOpen ` R ) qTop F ) = ( ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) ) | 
						
							| 32 |  | blbas |  |-  ( ( ( dist ` R ) |` ( V X. V ) ) e. ( *Met ` V ) -> ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) e. TopBases ) | 
						
							| 33 | 14 32 | syl |  |-  ( ph -> ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) e. TopBases ) | 
						
							| 34 |  | unirnbl |  |-  ( ( ( dist ` R ) |` ( V X. V ) ) e. ( *Met ` V ) -> U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) = V ) | 
						
							| 35 |  | f1oeq2 |  |-  ( U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) = V -> ( F : U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) -1-1-onto-> B <-> F : V -1-1-onto-> B ) ) | 
						
							| 36 | 14 34 35 | 3syl |  |-  ( ph -> ( F : U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) -1-1-onto-> B <-> F : V -1-1-onto-> B ) ) | 
						
							| 37 | 3 36 | mpbird |  |-  ( ph -> F : U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) -1-1-onto-> B ) | 
						
							| 38 |  | eqid |  |-  U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) = U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) | 
						
							| 39 | 38 | tgqtop |  |-  ( ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) e. TopBases /\ F : U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) -1-1-onto-> B ) -> ( ( topGen ` ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) ) qTop F ) = ( topGen ` ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) ) ) | 
						
							| 40 | 33 37 39 | syl2anc |  |-  ( ph -> ( ( topGen ` ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) ) qTop F ) = ( topGen ` ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) ) ) | 
						
							| 41 |  | eqid |  |-  ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) = ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) | 
						
							| 42 | 41 | mopnval |  |-  ( ( ( dist ` R ) |` ( V X. V ) ) e. ( *Met ` V ) -> ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) = ( topGen ` ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) ) ) | 
						
							| 43 | 14 42 | syl |  |-  ( ph -> ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) = ( topGen ` ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) ) ) | 
						
							| 44 | 43 | oveq1d |  |-  ( ph -> ( ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) = ( ( topGen ` ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) ) qTop F ) ) | 
						
							| 45 |  | eqid |  |-  ( MetOpen ` ( dist ` U ) ) = ( MetOpen ` ( dist ` U ) ) | 
						
							| 46 | 45 | mopnval |  |-  ( ( dist ` U ) e. ( *Met ` B ) -> ( MetOpen ` ( dist ` U ) ) = ( topGen ` ran ( ball ` ( dist ` U ) ) ) ) | 
						
							| 47 | 15 46 | syl |  |-  ( ph -> ( MetOpen ` ( dist ` U ) ) = ( topGen ` ran ( ball ` ( dist ` U ) ) ) ) | 
						
							| 48 |  | xmetf |  |-  ( ( dist ` U ) e. ( *Met ` ( Base ` U ) ) -> ( dist ` U ) : ( ( Base ` U ) X. ( Base ` U ) ) --> RR* ) | 
						
							| 49 | 20 48 | syl |  |-  ( ph -> ( dist ` U ) : ( ( Base ` U ) X. ( Base ` U ) ) --> RR* ) | 
						
							| 50 |  | ffn |  |-  ( ( dist ` U ) : ( ( Base ` U ) X. ( Base ` U ) ) --> RR* -> ( dist ` U ) Fn ( ( Base ` U ) X. ( Base ` U ) ) ) | 
						
							| 51 |  | fnresdm |  |-  ( ( dist ` U ) Fn ( ( Base ` U ) X. ( Base ` U ) ) -> ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) = ( dist ` U ) ) | 
						
							| 52 | 49 50 51 | 3syl |  |-  ( ph -> ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) = ( dist ` U ) ) | 
						
							| 53 | 52 | fveq2d |  |-  ( ph -> ( MetOpen ` ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) ) = ( MetOpen ` ( dist ` U ) ) ) | 
						
							| 54 | 3 | ad2antrr |  |-  ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> F : V -1-1-onto-> B ) | 
						
							| 55 |  | f1of1 |  |-  ( F : V -1-1-onto-> B -> F : V -1-1-> B ) | 
						
							| 56 | 54 55 | syl |  |-  ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> F : V -1-1-> B ) | 
						
							| 57 |  | cnvimass |  |-  ( `' F " x ) C_ dom F | 
						
							| 58 |  | f1odm |  |-  ( F : V -1-1-onto-> B -> dom F = V ) | 
						
							| 59 | 54 58 | syl |  |-  ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> dom F = V ) | 
						
							| 60 | 57 59 | sseqtrid |  |-  ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( `' F " x ) C_ V ) | 
						
							| 61 | 14 | ad2antrr |  |-  ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( ( dist ` R ) |` ( V X. V ) ) e. ( *Met ` V ) ) | 
						
							| 62 |  | simprl |  |-  ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> y e. V ) | 
						
							| 63 |  | simprr |  |-  ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> r e. RR* ) | 
						
							| 64 |  | blssm |  |-  ( ( ( ( dist ` R ) |` ( V X. V ) ) e. ( *Met ` V ) /\ y e. V /\ r e. RR* ) -> ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) C_ V ) | 
						
							| 65 | 61 62 63 64 | syl3anc |  |-  ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) C_ V ) | 
						
							| 66 |  | f1imaeq |  |-  ( ( F : V -1-1-> B /\ ( ( `' F " x ) C_ V /\ ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) C_ V ) ) -> ( ( F " ( `' F " x ) ) = ( F " ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) <-> ( `' F " x ) = ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) ) | 
						
							| 67 | 56 60 65 66 | syl12anc |  |-  ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( ( F " ( `' F " x ) ) = ( F " ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) <-> ( `' F " x ) = ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) ) | 
						
							| 68 | 54 16 | syl |  |-  ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> F : V -onto-> B ) | 
						
							| 69 |  | simplr |  |-  ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> x C_ B ) | 
						
							| 70 |  | foimacnv |  |-  ( ( F : V -onto-> B /\ x C_ B ) -> ( F " ( `' F " x ) ) = x ) | 
						
							| 71 | 68 69 70 | syl2anc |  |-  ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( F " ( `' F " x ) ) = x ) | 
						
							| 72 | 1 | ad2antrr |  |-  ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> U = ( F "s R ) ) | 
						
							| 73 | 2 | ad2antrr |  |-  ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> V = ( Base ` R ) ) | 
						
							| 74 | 4 | ad2antrr |  |-  ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> R e. *MetSp ) | 
						
							| 75 | 72 73 54 74 5 6 61 62 63 | imasf1obl |  |-  ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) = ( F " ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) ) | 
						
							| 76 | 75 | eqcomd |  |-  ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( F " ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) | 
						
							| 77 | 71 76 | eqeq12d |  |-  ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( ( F " ( `' F " x ) ) = ( F " ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) <-> x = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) ) | 
						
							| 78 | 67 77 | bitr3d |  |-  ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( ( `' F " x ) = ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) <-> x = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) ) | 
						
							| 79 | 78 | 2rexbidva |  |-  ( ( ph /\ x C_ B ) -> ( E. y e. V E. r e. RR* ( `' F " x ) = ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) <-> E. y e. V E. r e. RR* x = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) ) | 
						
							| 80 | 3 | adantr |  |-  ( ( ph /\ x C_ B ) -> F : V -1-1-onto-> B ) | 
						
							| 81 |  | f1ofn |  |-  ( F : V -1-1-onto-> B -> F Fn V ) | 
						
							| 82 |  | oveq1 |  |-  ( z = ( F ` y ) -> ( z ( ball ` ( dist ` U ) ) r ) = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) | 
						
							| 83 | 82 | eqeq2d |  |-  ( z = ( F ` y ) -> ( x = ( z ( ball ` ( dist ` U ) ) r ) <-> x = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) ) | 
						
							| 84 | 83 | rexbidv |  |-  ( z = ( F ` y ) -> ( E. r e. RR* x = ( z ( ball ` ( dist ` U ) ) r ) <-> E. r e. RR* x = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) ) | 
						
							| 85 | 84 | rexrn |  |-  ( F Fn V -> ( E. z e. ran F E. r e. RR* x = ( z ( ball ` ( dist ` U ) ) r ) <-> E. y e. V E. r e. RR* x = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) ) | 
						
							| 86 | 80 81 85 | 3syl |  |-  ( ( ph /\ x C_ B ) -> ( E. z e. ran F E. r e. RR* x = ( z ( ball ` ( dist ` U ) ) r ) <-> E. y e. V E. r e. RR* x = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) ) | 
						
							| 87 |  | forn |  |-  ( F : V -onto-> B -> ran F = B ) | 
						
							| 88 | 80 16 87 | 3syl |  |-  ( ( ph /\ x C_ B ) -> ran F = B ) | 
						
							| 89 | 88 | rexeqdv |  |-  ( ( ph /\ x C_ B ) -> ( E. z e. ran F E. r e. RR* x = ( z ( ball ` ( dist ` U ) ) r ) <-> E. z e. B E. r e. RR* x = ( z ( ball ` ( dist ` U ) ) r ) ) ) | 
						
							| 90 | 79 86 89 | 3bitr2d |  |-  ( ( ph /\ x C_ B ) -> ( E. y e. V E. r e. RR* ( `' F " x ) = ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) <-> E. z e. B E. r e. RR* x = ( z ( ball ` ( dist ` U ) ) r ) ) ) | 
						
							| 91 | 14 | adantr |  |-  ( ( ph /\ x C_ B ) -> ( ( dist ` R ) |` ( V X. V ) ) e. ( *Met ` V ) ) | 
						
							| 92 |  | blrn |  |-  ( ( ( dist ` R ) |` ( V X. V ) ) e. ( *Met ` V ) -> ( ( `' F " x ) e. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) <-> E. y e. V E. r e. RR* ( `' F " x ) = ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) ) | 
						
							| 93 | 91 92 | syl |  |-  ( ( ph /\ x C_ B ) -> ( ( `' F " x ) e. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) <-> E. y e. V E. r e. RR* ( `' F " x ) = ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) ) | 
						
							| 94 | 15 | adantr |  |-  ( ( ph /\ x C_ B ) -> ( dist ` U ) e. ( *Met ` B ) ) | 
						
							| 95 |  | blrn |  |-  ( ( dist ` U ) e. ( *Met ` B ) -> ( x e. ran ( ball ` ( dist ` U ) ) <-> E. z e. B E. r e. RR* x = ( z ( ball ` ( dist ` U ) ) r ) ) ) | 
						
							| 96 | 94 95 | syl |  |-  ( ( ph /\ x C_ B ) -> ( x e. ran ( ball ` ( dist ` U ) ) <-> E. z e. B E. r e. RR* x = ( z ( ball ` ( dist ` U ) ) r ) ) ) | 
						
							| 97 | 90 93 96 | 3bitr4d |  |-  ( ( ph /\ x C_ B ) -> ( ( `' F " x ) e. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) <-> x e. ran ( ball ` ( dist ` U ) ) ) ) | 
						
							| 98 | 97 | pm5.32da |  |-  ( ph -> ( ( x C_ B /\ ( `' F " x ) e. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) ) <-> ( x C_ B /\ x e. ran ( ball ` ( dist ` U ) ) ) ) ) | 
						
							| 99 |  | f1ofo |  |-  ( F : U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) -1-1-onto-> B -> F : U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) -onto-> B ) | 
						
							| 100 | 37 99 | syl |  |-  ( ph -> F : U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) -onto-> B ) | 
						
							| 101 | 38 | elqtop2 |  |-  ( ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) e. TopBases /\ F : U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) -onto-> B ) -> ( x e. ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) <-> ( x C_ B /\ ( `' F " x ) e. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) ) ) ) | 
						
							| 102 | 33 100 101 | syl2anc |  |-  ( ph -> ( x e. ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) <-> ( x C_ B /\ ( `' F " x ) e. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) ) ) ) | 
						
							| 103 |  | blf |  |-  ( ( dist ` U ) e. ( *Met ` B ) -> ( ball ` ( dist ` U ) ) : ( B X. RR* ) --> ~P B ) | 
						
							| 104 |  | frn |  |-  ( ( ball ` ( dist ` U ) ) : ( B X. RR* ) --> ~P B -> ran ( ball ` ( dist ` U ) ) C_ ~P B ) | 
						
							| 105 | 15 103 104 | 3syl |  |-  ( ph -> ran ( ball ` ( dist ` U ) ) C_ ~P B ) | 
						
							| 106 | 105 | sseld |  |-  ( ph -> ( x e. ran ( ball ` ( dist ` U ) ) -> x e. ~P B ) ) | 
						
							| 107 |  | elpwi |  |-  ( x e. ~P B -> x C_ B ) | 
						
							| 108 | 106 107 | syl6 |  |-  ( ph -> ( x e. ran ( ball ` ( dist ` U ) ) -> x C_ B ) ) | 
						
							| 109 | 108 | pm4.71rd |  |-  ( ph -> ( x e. ran ( ball ` ( dist ` U ) ) <-> ( x C_ B /\ x e. ran ( ball ` ( dist ` U ) ) ) ) ) | 
						
							| 110 | 98 102 109 | 3bitr4d |  |-  ( ph -> ( x e. ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) <-> x e. ran ( ball ` ( dist ` U ) ) ) ) | 
						
							| 111 | 110 | eqrdv |  |-  ( ph -> ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) = ran ( ball ` ( dist ` U ) ) ) | 
						
							| 112 | 111 | fveq2d |  |-  ( ph -> ( topGen ` ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) ) = ( topGen ` ran ( ball ` ( dist ` U ) ) ) ) | 
						
							| 113 | 47 53 112 | 3eqtr4d |  |-  ( ph -> ( MetOpen ` ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) ) = ( topGen ` ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) ) ) | 
						
							| 114 | 40 44 113 | 3eqtr4d |  |-  ( ph -> ( ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) = ( MetOpen ` ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) ) ) | 
						
							| 115 | 26 31 114 | 3eqtrd |  |-  ( ph -> ( TopOpen ` U ) = ( MetOpen ` ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) ) ) | 
						
							| 116 |  | eqid |  |-  ( Base ` U ) = ( Base ` U ) | 
						
							| 117 |  | eqid |  |-  ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) = ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) | 
						
							| 118 | 25 116 117 | isxms2 |  |-  ( U e. *MetSp <-> ( ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) e. ( *Met ` ( Base ` U ) ) /\ ( TopOpen ` U ) = ( MetOpen ` ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) ) ) ) | 
						
							| 119 | 23 115 118 | sylanbrc |  |-  ( ph -> U e. *MetSp ) |