| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imasgrp.u |  |-  ( ph -> U = ( F "s R ) ) | 
						
							| 2 |  | imasgrp.v |  |-  ( ph -> V = ( Base ` R ) ) | 
						
							| 3 |  | imasgrp.p |  |-  ( ph -> .+ = ( +g ` R ) ) | 
						
							| 4 |  | imasgrp.f |  |-  ( ph -> F : V -onto-> B ) | 
						
							| 5 |  | imasgrp.e |  |-  ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) ) | 
						
							| 6 |  | imasgrp.r |  |-  ( ph -> R e. Grp ) | 
						
							| 7 |  | imasgrp.z |  |-  .0. = ( 0g ` R ) | 
						
							| 8 | 6 | 3ad2ant1 |  |-  ( ( ph /\ x e. V /\ y e. V ) -> R e. Grp ) | 
						
							| 9 |  | simp2 |  |-  ( ( ph /\ x e. V /\ y e. V ) -> x e. V ) | 
						
							| 10 | 2 | 3ad2ant1 |  |-  ( ( ph /\ x e. V /\ y e. V ) -> V = ( Base ` R ) ) | 
						
							| 11 | 9 10 | eleqtrd |  |-  ( ( ph /\ x e. V /\ y e. V ) -> x e. ( Base ` R ) ) | 
						
							| 12 |  | simp3 |  |-  ( ( ph /\ x e. V /\ y e. V ) -> y e. V ) | 
						
							| 13 | 12 10 | eleqtrd |  |-  ( ( ph /\ x e. V /\ y e. V ) -> y e. ( Base ` R ) ) | 
						
							| 14 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 15 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 16 | 14 15 | grpcl |  |-  ( ( R e. Grp /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( +g ` R ) y ) e. ( Base ` R ) ) | 
						
							| 17 | 8 11 13 16 | syl3anc |  |-  ( ( ph /\ x e. V /\ y e. V ) -> ( x ( +g ` R ) y ) e. ( Base ` R ) ) | 
						
							| 18 | 3 | 3ad2ant1 |  |-  ( ( ph /\ x e. V /\ y e. V ) -> .+ = ( +g ` R ) ) | 
						
							| 19 | 18 | oveqd |  |-  ( ( ph /\ x e. V /\ y e. V ) -> ( x .+ y ) = ( x ( +g ` R ) y ) ) | 
						
							| 20 | 17 19 10 | 3eltr4d |  |-  ( ( ph /\ x e. V /\ y e. V ) -> ( x .+ y ) e. V ) | 
						
							| 21 | 6 | adantr |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> R e. Grp ) | 
						
							| 22 | 11 | 3adant3r3 |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> x e. ( Base ` R ) ) | 
						
							| 23 | 13 | 3adant3r3 |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> y e. ( Base ` R ) ) | 
						
							| 24 |  | simpr3 |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> z e. V ) | 
						
							| 25 | 2 | adantr |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> V = ( Base ` R ) ) | 
						
							| 26 | 24 25 | eleqtrd |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> z e. ( Base ` R ) ) | 
						
							| 27 | 14 15 | grpass |  |-  ( ( R e. Grp /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( x ( +g ` R ) y ) ( +g ` R ) z ) = ( x ( +g ` R ) ( y ( +g ` R ) z ) ) ) | 
						
							| 28 | 21 22 23 26 27 | syl13anc |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( x ( +g ` R ) y ) ( +g ` R ) z ) = ( x ( +g ` R ) ( y ( +g ` R ) z ) ) ) | 
						
							| 29 | 3 | adantr |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> .+ = ( +g ` R ) ) | 
						
							| 30 | 19 | 3adant3r3 |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( x .+ y ) = ( x ( +g ` R ) y ) ) | 
						
							| 31 |  | eqidd |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> z = z ) | 
						
							| 32 | 29 30 31 | oveq123d |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( x .+ y ) .+ z ) = ( ( x ( +g ` R ) y ) ( +g ` R ) z ) ) | 
						
							| 33 |  | eqidd |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> x = x ) | 
						
							| 34 | 29 | oveqd |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( y .+ z ) = ( y ( +g ` R ) z ) ) | 
						
							| 35 | 29 33 34 | oveq123d |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( x .+ ( y .+ z ) ) = ( x ( +g ` R ) ( y ( +g ` R ) z ) ) ) | 
						
							| 36 | 28 32 35 | 3eqtr4d |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) | 
						
							| 37 | 36 | fveq2d |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( ( x .+ y ) .+ z ) ) = ( F ` ( x .+ ( y .+ z ) ) ) ) | 
						
							| 38 | 14 7 | grpidcl |  |-  ( R e. Grp -> .0. e. ( Base ` R ) ) | 
						
							| 39 | 6 38 | syl |  |-  ( ph -> .0. e. ( Base ` R ) ) | 
						
							| 40 | 39 2 | eleqtrrd |  |-  ( ph -> .0. e. V ) | 
						
							| 41 | 3 | adantr |  |-  ( ( ph /\ x e. V ) -> .+ = ( +g ` R ) ) | 
						
							| 42 | 41 | oveqd |  |-  ( ( ph /\ x e. V ) -> ( .0. .+ x ) = ( .0. ( +g ` R ) x ) ) | 
						
							| 43 | 2 | eleq2d |  |-  ( ph -> ( x e. V <-> x e. ( Base ` R ) ) ) | 
						
							| 44 | 43 | biimpa |  |-  ( ( ph /\ x e. V ) -> x e. ( Base ` R ) ) | 
						
							| 45 | 14 15 7 | grplid |  |-  ( ( R e. Grp /\ x e. ( Base ` R ) ) -> ( .0. ( +g ` R ) x ) = x ) | 
						
							| 46 | 6 44 45 | syl2an2r |  |-  ( ( ph /\ x e. V ) -> ( .0. ( +g ` R ) x ) = x ) | 
						
							| 47 | 42 46 | eqtrd |  |-  ( ( ph /\ x e. V ) -> ( .0. .+ x ) = x ) | 
						
							| 48 | 47 | fveq2d |  |-  ( ( ph /\ x e. V ) -> ( F ` ( .0. .+ x ) ) = ( F ` x ) ) | 
						
							| 49 |  | eqid |  |-  ( invg ` R ) = ( invg ` R ) | 
						
							| 50 | 14 49 | grpinvcl |  |-  ( ( R e. Grp /\ x e. ( Base ` R ) ) -> ( ( invg ` R ) ` x ) e. ( Base ` R ) ) | 
						
							| 51 | 6 44 50 | syl2an2r |  |-  ( ( ph /\ x e. V ) -> ( ( invg ` R ) ` x ) e. ( Base ` R ) ) | 
						
							| 52 | 2 | adantr |  |-  ( ( ph /\ x e. V ) -> V = ( Base ` R ) ) | 
						
							| 53 | 51 52 | eleqtrrd |  |-  ( ( ph /\ x e. V ) -> ( ( invg ` R ) ` x ) e. V ) | 
						
							| 54 | 41 | oveqd |  |-  ( ( ph /\ x e. V ) -> ( ( ( invg ` R ) ` x ) .+ x ) = ( ( ( invg ` R ) ` x ) ( +g ` R ) x ) ) | 
						
							| 55 | 14 15 7 49 | grplinv |  |-  ( ( R e. Grp /\ x e. ( Base ` R ) ) -> ( ( ( invg ` R ) ` x ) ( +g ` R ) x ) = .0. ) | 
						
							| 56 | 6 44 55 | syl2an2r |  |-  ( ( ph /\ x e. V ) -> ( ( ( invg ` R ) ` x ) ( +g ` R ) x ) = .0. ) | 
						
							| 57 | 54 56 | eqtrd |  |-  ( ( ph /\ x e. V ) -> ( ( ( invg ` R ) ` x ) .+ x ) = .0. ) | 
						
							| 58 | 57 | fveq2d |  |-  ( ( ph /\ x e. V ) -> ( F ` ( ( ( invg ` R ) ` x ) .+ x ) ) = ( F ` .0. ) ) | 
						
							| 59 | 1 2 3 4 5 6 20 37 40 48 53 58 | imasgrp2 |  |-  ( ph -> ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) |