| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imasgrpf1.u |  |-  U = ( F "s R ) | 
						
							| 2 |  | imasgrpf1.v |  |-  V = ( Base ` R ) | 
						
							| 3 | 1 | a1i |  |-  ( ( F : V -1-1-> B /\ R e. Grp ) -> U = ( F "s R ) ) | 
						
							| 4 | 2 | a1i |  |-  ( ( F : V -1-1-> B /\ R e. Grp ) -> V = ( Base ` R ) ) | 
						
							| 5 |  | eqidd |  |-  ( ( F : V -1-1-> B /\ R e. Grp ) -> ( +g ` R ) = ( +g ` R ) ) | 
						
							| 6 |  | f1f1orn |  |-  ( F : V -1-1-> B -> F : V -1-1-onto-> ran F ) | 
						
							| 7 | 6 | adantr |  |-  ( ( F : V -1-1-> B /\ R e. Grp ) -> F : V -1-1-onto-> ran F ) | 
						
							| 8 |  | f1ofo |  |-  ( F : V -1-1-onto-> ran F -> F : V -onto-> ran F ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( F : V -1-1-> B /\ R e. Grp ) -> F : V -onto-> ran F ) | 
						
							| 10 | 7 | f1ocpbl |  |-  ( ( ( F : V -1-1-> B /\ R e. Grp ) /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( +g ` R ) b ) ) = ( F ` ( p ( +g ` R ) q ) ) ) ) | 
						
							| 11 |  | simpr |  |-  ( ( F : V -1-1-> B /\ R e. Grp ) -> R e. Grp ) | 
						
							| 12 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 13 | 3 4 5 9 10 11 12 | imasgrp |  |-  ( ( F : V -1-1-> B /\ R e. Grp ) -> ( U e. Grp /\ ( F ` ( 0g ` R ) ) = ( 0g ` U ) ) ) | 
						
							| 14 | 13 | simpld |  |-  ( ( F : V -1-1-> B /\ R e. Grp ) -> U e. Grp ) |