| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasless.u |
|- ( ph -> U = ( F "s R ) ) |
| 2 |
|
imasless.v |
|- ( ph -> V = ( Base ` R ) ) |
| 3 |
|
imasless.f |
|- ( ph -> F : V -onto-> B ) |
| 4 |
|
imasless.r |
|- ( ph -> R e. Z ) |
| 5 |
|
imasless.l |
|- .<_ = ( le ` U ) |
| 6 |
|
eqid |
|- ( le ` R ) = ( le ` R ) |
| 7 |
1 2 3 4 6 5
|
imasle |
|- ( ph -> .<_ = ( ( F o. ( le ` R ) ) o. `' F ) ) |
| 8 |
|
relco |
|- Rel ( ( F o. ( le ` R ) ) o. `' F ) |
| 9 |
|
relssdmrn |
|- ( Rel ( ( F o. ( le ` R ) ) o. `' F ) -> ( ( F o. ( le ` R ) ) o. `' F ) C_ ( dom ( ( F o. ( le ` R ) ) o. `' F ) X. ran ( ( F o. ( le ` R ) ) o. `' F ) ) ) |
| 10 |
8 9
|
ax-mp |
|- ( ( F o. ( le ` R ) ) o. `' F ) C_ ( dom ( ( F o. ( le ` R ) ) o. `' F ) X. ran ( ( F o. ( le ` R ) ) o. `' F ) ) |
| 11 |
|
dmco |
|- dom ( ( F o. ( le ` R ) ) o. `' F ) = ( `' `' F " dom ( F o. ( le ` R ) ) ) |
| 12 |
|
fof |
|- ( F : V -onto-> B -> F : V --> B ) |
| 13 |
|
frel |
|- ( F : V --> B -> Rel F ) |
| 14 |
3 12 13
|
3syl |
|- ( ph -> Rel F ) |
| 15 |
|
dfrel2 |
|- ( Rel F <-> `' `' F = F ) |
| 16 |
14 15
|
sylib |
|- ( ph -> `' `' F = F ) |
| 17 |
16
|
imaeq1d |
|- ( ph -> ( `' `' F " dom ( F o. ( le ` R ) ) ) = ( F " dom ( F o. ( le ` R ) ) ) ) |
| 18 |
|
imassrn |
|- ( F " dom ( F o. ( le ` R ) ) ) C_ ran F |
| 19 |
|
forn |
|- ( F : V -onto-> B -> ran F = B ) |
| 20 |
3 19
|
syl |
|- ( ph -> ran F = B ) |
| 21 |
18 20
|
sseqtrid |
|- ( ph -> ( F " dom ( F o. ( le ` R ) ) ) C_ B ) |
| 22 |
17 21
|
eqsstrd |
|- ( ph -> ( `' `' F " dom ( F o. ( le ` R ) ) ) C_ B ) |
| 23 |
11 22
|
eqsstrid |
|- ( ph -> dom ( ( F o. ( le ` R ) ) o. `' F ) C_ B ) |
| 24 |
|
rncoss |
|- ran ( ( F o. ( le ` R ) ) o. `' F ) C_ ran ( F o. ( le ` R ) ) |
| 25 |
|
rnco2 |
|- ran ( F o. ( le ` R ) ) = ( F " ran ( le ` R ) ) |
| 26 |
|
imassrn |
|- ( F " ran ( le ` R ) ) C_ ran F |
| 27 |
26 20
|
sseqtrid |
|- ( ph -> ( F " ran ( le ` R ) ) C_ B ) |
| 28 |
25 27
|
eqsstrid |
|- ( ph -> ran ( F o. ( le ` R ) ) C_ B ) |
| 29 |
24 28
|
sstrid |
|- ( ph -> ran ( ( F o. ( le ` R ) ) o. `' F ) C_ B ) |
| 30 |
|
xpss12 |
|- ( ( dom ( ( F o. ( le ` R ) ) o. `' F ) C_ B /\ ran ( ( F o. ( le ` R ) ) o. `' F ) C_ B ) -> ( dom ( ( F o. ( le ` R ) ) o. `' F ) X. ran ( ( F o. ( le ` R ) ) o. `' F ) ) C_ ( B X. B ) ) |
| 31 |
23 29 30
|
syl2anc |
|- ( ph -> ( dom ( ( F o. ( le ` R ) ) o. `' F ) X. ran ( ( F o. ( le ` R ) ) o. `' F ) ) C_ ( B X. B ) ) |
| 32 |
10 31
|
sstrid |
|- ( ph -> ( ( F o. ( le ` R ) ) o. `' F ) C_ ( B X. B ) ) |
| 33 |
7 32
|
eqsstrd |
|- ( ph -> .<_ C_ ( B X. B ) ) |