Step |
Hyp |
Ref |
Expression |
1 |
|
imasless.u |
|- ( ph -> U = ( F "s R ) ) |
2 |
|
imasless.v |
|- ( ph -> V = ( Base ` R ) ) |
3 |
|
imasless.f |
|- ( ph -> F : V -onto-> B ) |
4 |
|
imasless.r |
|- ( ph -> R e. Z ) |
5 |
|
imasless.l |
|- .<_ = ( le ` U ) |
6 |
|
eqid |
|- ( le ` R ) = ( le ` R ) |
7 |
1 2 3 4 6 5
|
imasle |
|- ( ph -> .<_ = ( ( F o. ( le ` R ) ) o. `' F ) ) |
8 |
|
relco |
|- Rel ( ( F o. ( le ` R ) ) o. `' F ) |
9 |
|
relssdmrn |
|- ( Rel ( ( F o. ( le ` R ) ) o. `' F ) -> ( ( F o. ( le ` R ) ) o. `' F ) C_ ( dom ( ( F o. ( le ` R ) ) o. `' F ) X. ran ( ( F o. ( le ` R ) ) o. `' F ) ) ) |
10 |
8 9
|
ax-mp |
|- ( ( F o. ( le ` R ) ) o. `' F ) C_ ( dom ( ( F o. ( le ` R ) ) o. `' F ) X. ran ( ( F o. ( le ` R ) ) o. `' F ) ) |
11 |
|
dmco |
|- dom ( ( F o. ( le ` R ) ) o. `' F ) = ( `' `' F " dom ( F o. ( le ` R ) ) ) |
12 |
|
fof |
|- ( F : V -onto-> B -> F : V --> B ) |
13 |
|
frel |
|- ( F : V --> B -> Rel F ) |
14 |
3 12 13
|
3syl |
|- ( ph -> Rel F ) |
15 |
|
dfrel2 |
|- ( Rel F <-> `' `' F = F ) |
16 |
14 15
|
sylib |
|- ( ph -> `' `' F = F ) |
17 |
16
|
imaeq1d |
|- ( ph -> ( `' `' F " dom ( F o. ( le ` R ) ) ) = ( F " dom ( F o. ( le ` R ) ) ) ) |
18 |
|
imassrn |
|- ( F " dom ( F o. ( le ` R ) ) ) C_ ran F |
19 |
|
forn |
|- ( F : V -onto-> B -> ran F = B ) |
20 |
3 19
|
syl |
|- ( ph -> ran F = B ) |
21 |
18 20
|
sseqtrid |
|- ( ph -> ( F " dom ( F o. ( le ` R ) ) ) C_ B ) |
22 |
17 21
|
eqsstrd |
|- ( ph -> ( `' `' F " dom ( F o. ( le ` R ) ) ) C_ B ) |
23 |
11 22
|
eqsstrid |
|- ( ph -> dom ( ( F o. ( le ` R ) ) o. `' F ) C_ B ) |
24 |
|
rncoss |
|- ran ( ( F o. ( le ` R ) ) o. `' F ) C_ ran ( F o. ( le ` R ) ) |
25 |
|
rnco2 |
|- ran ( F o. ( le ` R ) ) = ( F " ran ( le ` R ) ) |
26 |
|
imassrn |
|- ( F " ran ( le ` R ) ) C_ ran F |
27 |
26 20
|
sseqtrid |
|- ( ph -> ( F " ran ( le ` R ) ) C_ B ) |
28 |
25 27
|
eqsstrid |
|- ( ph -> ran ( F o. ( le ` R ) ) C_ B ) |
29 |
24 28
|
sstrid |
|- ( ph -> ran ( ( F o. ( le ` R ) ) o. `' F ) C_ B ) |
30 |
|
xpss12 |
|- ( ( dom ( ( F o. ( le ` R ) ) o. `' F ) C_ B /\ ran ( ( F o. ( le ` R ) ) o. `' F ) C_ B ) -> ( dom ( ( F o. ( le ` R ) ) o. `' F ) X. ran ( ( F o. ( le ` R ) ) o. `' F ) ) C_ ( B X. B ) ) |
31 |
23 29 30
|
syl2anc |
|- ( ph -> ( dom ( ( F o. ( le ` R ) ) o. `' F ) X. ran ( ( F o. ( le ` R ) ) o. `' F ) ) C_ ( B X. B ) ) |
32 |
10 31
|
sstrid |
|- ( ph -> ( ( F o. ( le ` R ) ) o. `' F ) C_ ( B X. B ) ) |
33 |
7 32
|
eqsstrd |
|- ( ph -> .<_ C_ ( B X. B ) ) |